
Semilattices and Domains
Dana S. Scott

University Professor, Emeritus
Carnegie Mellon University

Visiting Scholar
University of California, Berkeley

dana.scott@cs.cmu.edu

Workshop DOMAINS IX
University of Sussex, Brighton, 22-24 September 2008

http://www.informatics.sussex.ac.uk/events/domains9/

Draft version, not for quotation.
Comments and suggestions welcomed.

Abstract. As everyone knows, one popular notion of Scott domain is defined as a bounded complete algebraic cpo. These are
closely related to algebraic lattices: (i) A Scott domain becomes an algebraic lattice with the adjunction of an (isolated) top
element. (ii) Every non-empty Scott-closed subset of an algebraic lattice is a Scott domain. Moreover, the isolated (= compact)
elements of an algebraic lattice form a semilattice (under join). This semilattice has a zero element, and, provided the top element
is isolated, it also has a unit element. The algebraic lattice itself may be regarded as the ideal completion of the semilattice of its
isolated elements. (Comment: The author apologizes for using the adjective "Scott" so often. But, remember, he did not invent
the terminology!)

Section 1. A universal domain. Let

  ã X A, 0, 1, Ó \
be a (join) semilattice (with unit and 0 ≠ 1). Let § be the partial ordering of the semilattice  defined as usual by
a § bóaÓ b ã b . We denote by °¥ the ideal completion (without necessarily a top) as being the set of proper ideals:

8X Œ A » 0 œ X & 1 – X &" a, b œ A @ a, b œ X óaÓ b œ X D <.
Under set inclusion, °¥ becomes a Scott domain.

Note that in case " a, b œ A @ aÓ b ã 1ïa ã 1 or b ã 1 D holds in the semilattice, then the completion °¥ is an algebraic lattice
with a top element. (Why?) As remarked in the abstract, the following result is well known:

Theorem. Up to isomorphism, every Scott domain can be obtained in this way.

Next, let  ã XP, 0, 1, Ó\ be the semilattice part of the free Boolean algebra on denumerably many generators (i.e., the Boolean
algebra of classical propositional calculus). As is also well known, the Stone space of  (regarded as a Boolean algebra) is
(homeomorphic to) the Cantor set (as a subset of the real unit interval). The standard result of Stone Duality implies:

Theorem. The Scott domain °¥ is isomorphic to the domain of open subsets of the Cantor set ~ with the compact, whole
Cantor set removed.

Not as well known is the:

Theorem. °¥ is a universal Scott domain for the countably based Scott domains.

The universality can be proved as follows. We need to know that , regarded as a Boolean algebra, contains an isomorphic copy
of every countable Boolean algebra as a subalgebra. This is a consequence of the fact that a countably generated Boolean
algebra is the union (direct limit) of a chain of finite subalgebras. Inasmuch as a finite Boolean algebra is atomic, say, with n
atoms, it can be embedded in  by taking n pairwise, non-zero elements of  to match the atoms. Now, any finite extension of
the finite Boolean algebra just subdivides the atoms of the smaller algebra into disjoint atoms of the larger algebra. Because 
has infinitely many independent generators, the embedded copy of the smaller finite algebra can easily have the images of its
atoms in  similarly subdivided into disjoint parts. In this way, any embedding can be extended to an embedding of a superalge-
bra. By iterating these extensions, the whole countable algebra can be isomorphically embedded in . And an easy corollary is
that , regarded as a semilattice, contains an isomorphic copy of every countable semilattice.

The universality can be proved as follows. We need to know that , regarded as a Boolean algebra, contains an isomorphic copy
of every countable Boolean algebra as a subalgebra. This is a consequence of the fact that a countably generated Boolean
algebra is the union (direct limit) of a chain of finite subalgebras. Inasmuch as a finite Boolean algebra is atomic, say, with n
atoms, it can be embedded in  by taking n pairwise, non-zero elements of  to match the atoms. Now, any finite extension of
the finite Boolean algebra just subdivides the atoms of the smaller algebra into disjoint atoms of the larger algebra. Because 
has infinitely many independent generators, the embedded copy of the smaller finite algebra can easily have the images of its
atoms in  similarly subdivided into disjoint parts. In this way, any embedding can be extended to an embedding of a superalge-
bra. By iterating these extensions, the whole countable algebra can be isomorphically embedded in . And an easy corollary is
that , regarded as a semilattice, contains an isomorphic copy of every countable semilattice.

To see this, all we have to do is embed a countable semilattice

  ã X A, 0, 1, Ó \
into a countable Boolean algebra. Thus, consider the Boolean algebra HA \ 81<L of all subsets of A not containing the element 1.
Define a mapping m : A Ø HA \ 81<L by:

mHaL = 8b œ A \ 81< » a i b<.
It is easy to see that this is a semilattice embedding. The range of m generates a countable Boolean algebra, which can be embed-
ded into our universal . Hence,  has a semilattice embedding into  as well.

Thus, from now on, restricting attention to countable semilattices, we regard various semilattices  as just being subsemilattices
of the fixed universal semilattice .

Note, too, that as an algebraic structure, and as regarded as a Boolean algebra,  can be enumerated by suitably chosen Gödel
numbers in such a way that all the Boolean operations and the partial ordering are (primitive) recursive. Moreover, given any
recursive semilattice, the above proof can be used to show that it can be given a recursive embedding onto a recursive subsemilat-
tice of .

Section 2. The lattice of subsemilattices. Let  be the collection of all subsemilattices of  regarded just as a collection of
subsets of P. Under inclusion, as is well known,  is an algebraic lattice. The bottom element of  is 80, 1<, and the top element
is P, which, by the way, is not isolated. (Why?) In fact, the isolated elements of  are just the finite subsemilattices of , and
every finite subset of P generates a finite subsemilattice.

Let  denote the semilattice of finite elements of  together with a top element (actually it could be P itself). It follows from the
remarks of the preceding paragraph that the semilattice  can be given a recursive embedding into  and is indeed isomorphic to a
recursive element of .

For A œ , let us now slightly modify the definition of °¥ in order to make some comparisons easier. Use for p œ P the notation
 p ã 8q œ P » q § p <. And for sets, also write X ã 8q œ P » $ p œ X. q § p <.
We then define °A¥ ã 8 HX ›AL » X œ °¥<. With this notation °A¥ is a subdomain of °P¥ ã °¥. Indeed, the mapping
X # HX › AL is a continuous finitary projection of °P¥ onto °A¥. And note that °A¥ ‹8P< is a lattice under the join operation,
which can be defined as:

XÓY ã 8pÓ q » p œ X & q œ Y <.
What good is all this? Well, some years ago the author and, independently, Glynn Winskel introduced the notion of information
systems for constructing Scott domains. More recently Winskel in his excellent textbook, The Formal Semantics of Programming
Languages: An Introduction (MIT Press, 1993), devotes Chapter 12 to this theory in order to show how to solve recursive domain
equations. In lectures at UC Berkeley this spring the author realized that the all the necessary structure of information systems
can be explained just by using semilattices in what he considers to be a very elementary way.

To understand how semilattices can be used in this way, interpret (informally) the element 0 œ P to stand for "no information"
and the element 1 œ P to stand for "too much information". Note that all the semilattices A œ  use the same elements 0 and 1 in
this way. The relationship q § p then means that q has "less information" than p. Again, all the semilattices A œ  use the same
partial ordering coming from P.

2 SemilatticesPrint.nb

To understand how semilattices can be used in this way, interpret (informally) the element 0 œ P to stand for "no information"
and the element 1 œ P to stand for "too much information". Note that all the semilattices A œ  use the same elements 0 and 1 in
this way. The relationship q § p then means that q has "less information" than p. Again, all the semilattices A œ  use the same
partial ordering coming from P.

Consider next two elements p, q œ P. How should we interpret the element pÓ q? The answer is to "join" the information in p to
the information in q. However, were it to turn out that pÓ q ã 1, then we need to call p "informationally inconsistent" with q.

Note that we insisted for ideals X œ °P¥ that 1 – X. This means that all our ideal elements are "consistent". Note, too, that one
notion of join and one notion of consistency work for all the semilattices in .

And, one hopes for making life seem a little simpler, the only difference between ideals X œ °A¥ and other ideals in Y œ °P¥ is
that these ideals are "generated" by information confined to A. Indeed, for each X œ °A¥ we have X ã HX ›AL.
Section 3. Constructing domains. We next have to ask an important question.

How do semilattices help in defining domain constructs? Let us examine first the constructions of products and sums. The key
idea is that, since the isolated elements of a Scott domain determine the whole domain, one tries to define the construct on the
isolated elements. For products and sums this proves to be quite easy.

Because P is being used as a universal domain, we need a kind of general ordered pair in the semilattice P. A convenient one can
be obtained with properties as follows:

Theorem. There is a recursive operation XXp, q\\ on P such that:
(i) XX0, 0\\ ã 0;
(ii) XXp, q\\ ã 1ó p ã 1 or q ã 1;
(iii) XXp0, q0\\Ó XXp1, q1\\ ã XXp0Ó q1, p0Ó q1\\; and
(iv) XXp0, q0\\ § XXp1, q1\\ ó p1 ã 1 or q1 ã 1 or @ p0 § p1 & q0 § q1 D.

Moreover, the range of the operation is a recursive subset of P.

Before indicating a proof, we introduce three definitions.

Definition. For X, Y Œ P, let X µ Y ã 8 XXp, q\\ » p œ X & q œ Y <.
Definition. H ã 8 XXp, q\\ » @p ã 0 & q ã 0D or @p ≠ 0 & q ≠ 0D <.
Definition. For A, B œ , let A µs B ã 8 XXp, q\\ » p œ A & q œ B < › H.

From the theorem above about XXp, q\\ it follows that whenever A, B œ , then A µ B œ  as well. (Clauses (i) and (ii) of the
theorem come into play since all the subsemilattices of P have to use the same 0 and 1.) Additionally this product definition is a
(computable and) continuous operation on the Scott domain .

Now, when we look at the elements of °A µ B¥, we find each Z œ °A µ B¥ corresponds uniquely to the pair of elements X œ °A¥
and Y œ °B¥, where X ã 8p » XXp, 0\\ œ Z< and Y ã 8q » XX0, q\\ œ Z<. Moreover, for any two X œ °A¥ and Y œ °B¥, we find that
Z ã HX µ Y L œ °A µ B¥. Filling in some minor details here, we can then prove:

Theorem. °A µ B¥ is indeed isomorphic to the domain product of °A¥ and °B¥.
It is easy to see that H œ . A simple proof shows that °A µs B¥ is isomorphic to the familiar smash product of °A¥ and °B¥.
And, in terms of semilattices we again have a (computable and) continuous operation on the Scott domain  with a simple
definition.

We now have to return to defining pairs and to proving the theorem. So, we again think of P as a free Boolean algebra, say on
generators v0, v1, …, vn, … . Two homomorphisms of P can be defined .

SemilatticesPrint.nb 3

We now have to return to defining pairs and to proving the theorem. So, we again think of P as a free Boolean algebra, say on
generators v0, v1, …, vn, … . Two homomorphisms of P can be defined .

Let e0 : P Ø P be the (recursive) Boolean monomorphism where e0HvnL ã v2 n.

Let e1 : P Ø P be that other (recursive) Boolean monomorphism where e1HvnL ã v2 n+1.

Then, define XXp, q\\ ã e0HpL Ó e1HqL.
There is only one part of one clause of the theorem that needs a little thought to prove. Thus, assume XXp0, q0\\ § XXp1, q1\\ and
both p1 ≠ 1 and q1 ≠ 1. In view of the last assumption, there is a Boolean homomorphism h : P Ø P such that hHe1Hq1LL ã 0, but
hHe0HpLL ã p, for all p œ P.

This would imply that p0 § p0Ó hHe1Hq0LL § p1. By a similar argument we can prove under the same assumptions that q0 § q1.

We note next that the pairing operation on P can be used for other constructs on semilattices.

Definition. For A0, A1, …, Am œ , the separated sum is defined as:

A0 + A1 + … + Am ã
80<‹ 8 XXp, v0\\ » p œ A0<‹ 8 XXp, Ÿ v0Ó v1\\ » p œ A1<‹…‹ 8 XXp, Ÿ v0ÓŸ v1Ó…ÓŸ vm-1Ó vm\\ » p œ Am<

Definition. For A0, A1, …, Am œ , the coalesced sum is defined as:

A0 +c A1 +c … +c Am ã HA0 + A1 + … + AmL› H.

We see that both sums produce semigroups from semigroups, and both are continuous and computable operations on . Both
operations can also easily be extended to denumerably many terms.

Definition. For A œ , the lift is defined as: A^ ã 80<‹ 8 XXp, 0\\Ó v1 » p œ A<.
Definition. For A œ , the drop is defined as: AT ã 81<‹ 8 XXp, 0\\Ô v1 » p œ A<.
We see that lifts and drops produce semigroups from semigroups, and they are continuous and computable operations on . We
have to leave to the reader the task of checking that these operations on semilattices produce the desired results for obtaining
these Scott domains:

°A0 + A1 + … + Am¥, °A0 +c A1 +c … +c Am¥, °A^¥, and ±ATµ
with the right domain properties. But we hope experience with standard Domain Theory makes this obvious.

Section 4. Function spaces as domain. And now we come to the next question.

Is it just as easy to construct the semilattices corresponding to function spaces? The answer is "not quite". The author did not
find any Boolean construction similar to the definition of XXp, q\\ to give the isolated elements of the space of continuous map-
pings from °P¥ into °P¥. Instead, the required semilattice has to be constructed formally as a countable semilattice and then
embedded into P. Here is the final result of the embedding.

Theorem. There is a recursive operation Hp fl qL on P ~ defined when p ≠ 1~ such that:
(i) Hp fl 1L ã 1;
(ii) fi

i<k
Hpi fl qiL ã 1 ï $ r ≠ 1. Í 8qi » pi § r< ã 1; and

(iii) Hr fl sL § fi
i<k

Hpi fl qiL ó fi
i<k

Hpi fl qiL ã 1 or s § Í 8qi » pi § r<.
Moreover, the semilattice generated by the range of the operation is a recursive subset of P.

Suppose we have such an operation. There are several properties that follow.

Lemma. Keeping in mind that, in using the operation H• fl •L, we always assume the first argument is not 1, then the following
properties hold:

(i) Hp fl qL ã 0óq ã 0;

(ii) fi
i<k

Hpi fl qiL ã 1 ó $ r ≠ 1. Í 8qi » pi § r< ã 1;

(iii) Hp fl qL ã 1óq ã 1;
(iv) p0 § p1 ≠ 1 & q1 § q0 ïHp1 fl q1L § Hp0 fl q0L ; and

(v) fi
i<k

Hp fl qiL ã Kp fl fi
i<k

qiO .

4 SemilatticesPrint.nb

Lemma. Keeping in mind that, in using the operation H• fl •L, we always assume the first argument is not 1, then the following
properties hold:

(i) Hp fl qL ã 0óq ã 0;

(ii) fi
i<k

Hpi fl qiL ã 1 ó $ r ≠ 1. Í 8qi » pi § r< ã 1;

(iii) Hp fl qL ã 1óq ã 1;
(iv) p0 § p1 ≠ 1 & q1 § q0 ïHp1 fl q1L § Hp0 fl q0L ; and

(v) fi
i<k

Hp fl qiL ã Kp fl fi
i<k

qiO .

Definition. For A, B œ , the normal function space basis is defined as:

HA fl BL ã : fi
i<k

Hpi fl qiL " i < k @ pi œ A \ 81< & qi œ B D> .

Definition. For A, B œ , the strict function space basis is defined as:

HA fls BL ã 80, 1<‹
: fi
i<k

Hpi fl qiL " i < k @ pi œ A \ 80, 1< & qi œ B \ 80, 1< D>

.

On the basis of these definition, for A, B œ , it is clear that both HA fl BL and HA fls BL are in  and that these are continuous
operations.

In order to understand the connections with function spaces, take any continuous function F : °A¥ Ø °B¥, where A, B œ  are
given. Now, a continuous function is completely determined by its action on isolated elements, which, in the case of the first
space are the  p œ °A¥. And these are in a one-one correspondence with the p œ A \ 81<. Let †F§ be the ideal in °A fl B¥ gener-
ated by the set

8Hp fl qL » q œ FH pL› B & p œ A \ 81< <.
From the properties of the operation H• fl •L mentioned above, we then check that for p œ A \ 81< and q œ B we have
Hp fl qL œ †F§óq œ FH pL. This shows that the functions F and the ideals of the form †F§ are in a one-one correspondence.

To show that every element of °A fl B¥ is of the proper form, suppose F œ °A fl B¥. Consider the function FF : °A¥ Ø °B¥
defined as

FFHXL ã 8q » $ Hp fl qL œ F. p œ X < for X œ °A¥.
After showing that this function is well defined, it is obvious that it is continuous. Moreover, †FF§ ã F.

Section 5. Recursive domain equations. Inasmuch as  is an effectively presented algebraic lattice, and because constructors
for domains can be given by easy-to-define continuous (and computable) mappings from  into itself, the standard Fixed-Point
Theorem for recursive definitions on domains can be applied directly to give recursive constructions of domains.

Indeed, a quick look at the definitions of A µ B, A µs B, A + B, A +c B, A^, AT, A fl B, and A fls B will show that each of these
operation take elements of  to elements of , and, moreover, , the semilattice of finite elements of , is also closed under these
operation. Furthermore, on  the operations are continuous, and on  they are computable. The same can be said of any composi-
tion of these operations.

SemilatticesPrint.nb 5

Do we not now have models for the l-calculus constructed from semilattices? Of course! There are many. We could start
with any A œ  and solve the domain equation D ã A +c HD fl DL to obtain a D œ . Then °D¥ can be regarded as a l-calculus
model. There are many other (well known) uses of domain equations also leading to models. Note, too, that °P¥ is itself a model,
inasmuch as °P fl P¥ is at once seen as a continuous retraction of °P¥.
Section 6. Some relations to the literature. The author pointed out early on in the development of Domain Theory the useful-
ness of universal domains of various kinds, and that approach was elaborated by many other authors~also for categories beyond
that of Scott domains considered here.

The universal domain for countably based algebraic lattices is Pw, the powerset of the integers, which is "simpler" than the Scott
domain °P¥ used here. As a l-calculus model, this is the graph model, originally proposed by Plotkin and analyzed extensively
in:

G.D. Plotkin, Set-theoretical and other elementary models of the l-calculus, Theoretical Computer Science, vol. 121 (1993), pp. 351|409.

Plotkin also discusses the so-called filter l-models and Engeler-style models. Some early references to the works of the "Torino
School" are:

M. Coppo, F. Honsell, M. Dezani-Ciancaglini and G. Longo, Extended type structures and filter l-models, Logic Colloquium ’82, North-Holland,

Amsterdam 1984, pp. 241-262.

H. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, The Journal of Symbolic Logic,
vol. 48 (1983), pp. 931-940.

M. Coppo, Completeness of type assignment in continuous lambda models, Theoretical Computer Science, vol. 29 (1984), pp. 309-324.

Further references can be found on Mario Coppo's home page. In the last cited paper, he writes in his abstract:

Ë The completeness of Curry's rules for assigning type schemes to terms of the pure lambda-calculus has been proved by Hindley (1983) and
Barendregt et al. (1983) using models of syntactic nature. A first result of this paper is a completeness proof with respect to the model Pw (as
asked by Scott (1976)). Moreover, an extension of Curry's system in which type schemes can be assigned to the fixed point combinator is
introduced, together with a notion of type semantics for which it is proved sound and complete (answering a question of Scott (1980)). Also in
this case, completeness is proved with respect to the model Pw. All results also hold for the alternative notions of type semantics proposed by
Hindley (1983) and Scott (1976, 1980).

Indeed, the filter l-models were originally invented to give a semantics to type assignments, and the work of Coppo and collabora-
tors ties together many results in this vein. The author wishes to stress here, however, that the universal domain °P¥ used here
has a much broader motivation. It contains not only the data for the function-space construction, but~as shown above~ways of
constructing a large selection of other structures. The rules for the "step functions" in Section 4 have been noted by many authors,
but they were the key insights for the authors original realization that the category of countably based Scott domains is a cartesian
closed category. Further investigations of l-calculus model constructions have been presented in this recent paper:

M. Hyland, M. Nagayama, J. Power, and G. Rosolini, A category theoretic formulation for Engeler-style models of the untyped l-calculus, Electronic
Notes in Theoretical Computer Science, vol. 161 (2006), pp. 43|57.

They make this comment at the end of their paper:

Ë We close by explaining the programme of work which we initiate here. Filter lambda models as introduced by the Torino school [...] are usually
taken to amount to a presentation of domain theoretic models. Certainly they are lambda models as they appear to come from categories with
enough points. But our analysis of the Engeler model is that it naturally arises from a category without enough points. So in our formulation it
is naturally a lambda algebra in the established terminology. Now the Engeler model is taken to be part of the general family of filter models.
So this raises (at least for us) questions along the following lines. Which filter models really are domain models (after all nobody doubts Scott’s
D¶), and which are naturally something else? There seems much more to understand about concrete constructions of models for the lambda
calculus (that is, in general about lambda algebras).

It is doubtful that the present paper contributes something new to their programme, but the author at least hopes the discussion
here shows that certain model constructions can be more easily explained than had been realized before.

6 SemilatticesPrint.nb

