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Abstract.   As everyone knows, one popular notion of Scott domain is defined  as a bounded  complete algebraic cpo.  These are
closely  related  to algebraic lattices: (i) A Scott domain  becomes  an algebraic  lattice with the adjunction  of an (isolated)  top
element.  (ii) Every non-empty Scott-closed subset of an algebraic lattice is a Scott domain.  Moreover,  the isolated (= compact)
elements of an algebraic lattice form a semilattice (under  join).  This semilattice has a zero element, and,  provided the top element
is isolated, it also has a unit element.  The algebraic lattice itself may be regarded  as the ideal  completion of the semilattice of its
isolated elements.   (Comment: The author apologizes for using the adjective  "Scott" so often.  But, remember,  he did not invent
the terminology!)

Section 1. A universal domain.  Let 

  ã X A, 0, 1, Ó \
be  a  (join) semilattice (with  unit and  0 ≠ 1).   Let  §  be  the partial  ordering  of  the semilattice   defined  as  usual  by
a § bóaÓ b ã b .  We denote by °¥ the ideal completion (without necessarily a top) as being the set of proper ideals:

8X Œ A » 0 œ X & 1 – X &" a, b œ A @ a, b œ X óaÓ b œ X D <.  
Under  set inclusion, °¥ becomes a Scott domain. 

Note that in case " a, b œ A @ aÓ b ã 1ïa ã 1 or b ã 1 D holds in the semilattice, then the completion °¥ is an algebraic lattice
with a top element.   (Why?)  As remarked  in the abstract, the following result is well known:

Theorem.  Up to isomorphism, every Scott domain can be obtained in this way.

Next, let  ã XP, 0, 1, Ó\ be the semilattice part of the free Boolean algebra on denumerably  many generators  (i.e., the Boolean
algebra  of classical propositional calculus).   As is also well known, the Stone space of  (regarded  as a Boolean  algebra)  is
(homeomorphic to) the Cantor set (as a subset of the real unit interval).  The standard  result of Stone Duality implies:

Theorem.   The Scott domain °¥ is isomorphic to the domain of open subsets of the Cantor set ~ with the compact,  whole
Cantor set removed.  

Not as well known is the:

Theorem.   °¥ is a universal Scott domain for the countably based Scott domains.  

The universality can be proved as follows.  We need to know that  , regarded  as a Boolean algebra,  contains an isomorphic copy
of every  countable Boolean  algebra  as a subalgebra.   This is a consequence  of the fact  that a countably generated  Boolean
algebra  is the union (direct  limit) of a chain of finite subalgebras.   Inasmuch as a finite Boolean  algebra is atomic, say, with n
atoms, it can be embedded  in  by taking n pairwise, non-zero  elements of  to match the atoms.  Now, any finite extension of
the finite Boolean  algebra just subdivides  the atoms of the smaller algebra into disjoint atoms of the larger algebra.   Because  
has  infinitely many independent  generators,  the embedded  copy of the smaller finite algebra  can easily have the images of its
atoms in  similarly subdivided  into disjoint parts.  In this way, any embedding  can be extended to an embedding  of a superalge-
bra.   By iterating these extensions, the whole countable algebra can be isomorphically embedded  in .  And an easy corollary is
that , regarded  as a semilattice, contains an isomorphic copy of every countable semilattice.   
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To see this, all we have to do is embed a countable semilattice

  ã X A, 0, 1, Ó \
into a countable Boolean algebra.   Thus, consider  the Boolean algebra HA \ 81<L of all subsets of A not containing the element 1.
Define a mapping m : A Ø HA \ 81<L by:

mHaL = 8b œ A \ 81< » a i b<.
It is easy to see that this is a semilattice embedding.   The range of m generates  a countable Boolean algebra,  which can be embed-
ded  into our universal .  Hence,   has a semilattice embedding  into  as well.

Thus, from now on, restricting attention to countable semilattices, we regard  various semilattices  as just being subsemilattices
of the fixed universal semilattice .

Note,  too, that as an algebraic  structure,  and as regarded  as a Boolean  algebra,   can  be enumerated  by suitably chosen Gödel
numbers  in such a way that all the Boolean  operations and the partial ordering  are (primitive) recursive.  Moreover,  given any
recursive  semilattice, the above proof can be used to show that it can be given a recursive embedding onto a recursive subsemilat-
tice of .

Section  2. The lattice of subsemilattices.  Let   be the collection of all subsemilattices of  regarded  just as a collection of
subsets of P.  Under  inclusion, as is well known,  is an algebraic lattice.  The bottom element of  is 80, 1<, and the top element
is P, which, by the way, is not isolated.   (Why?)  In fact, the isolated elements of  are just the finite subsemilattices of , and
every  finite subset of P generates  a finite subsemilattice.  

Let  denote the semilattice of finite elements of  together with a top element (actually it could be P itself).  It follows from the
remarks  of the preceding  paragraph  that the semilattice  can be given a recursive embedding  into  and is indeed  isomorphic to a
recursive  element of .

For A œ , let us now slightly modify the definition of °¥ in order  to make some comparisons easier.  Use for p œ P the notation
 p ã 8q œ P » q § p <.  And for sets, also write X ã 8q œ P » $ p œ X. q § p <. 
We  then define  °A¥ ã 8 HX ›AL » X œ °¥<.   With this notation °A¥  is a subdomain  of °P¥ ã °¥.   Indeed,  the mapping
X # HX › AL is a continuous finitary projection of °P¥ onto °A¥.  And note that °A¥ ‹8P< is a lattice under  the join operation,
which can be  defined  as:

XÓY ã 8pÓ q » p œ X & q œ Y <.
What good is all this?  Well, some years ago the author and,  independently,  Glynn Winskel introduced  the notion  of information
systems for constructing Scott domains.  More recently Winskel in his excellent textbook, The Formal Semantics of Programming
Languages: An Introduction (MIT Press, 1993), devotes  Chapter 12 to this theory in order  to show how to solve recursive domain
equations.    In lectures  at UC Berkeley  this spring the author realized  that the all the necessary  structure of information systems
can be explained just by using semilattices in what he considers  to be a very elementary way.  

To understand  how semilattices can be used in this way, interpret  (informally) the element 0 œ P to stand for "no information"
and the element 1 œ P to stand for "too much information".  Note that all the semilattices A œ  use the same elements 0 and 1 in
this way.  The relationship q § p then means that q has "less information" than p.   Again, all the semilattices A œ  use the same
partial ordering  coming from P.
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To understand  how semilattices can be used in this way, interpret  (informally) the element 0 œ P to stand for "no information"
and the element 1 œ P to stand for "too much information".  Note that all the semilattices A œ  use the same elements 0 and 1 in
this way.  The relationship q § p then means that q has "less information" than p.   Again, all the semilattices A œ  use the same
partial ordering  coming from P.

Consider next two elements p, q œ P.  How should we interpret the element pÓ q?  The answer is to "join" the information in p to
the information in q.  However,  were it to turn out that pÓ q ã 1, then we need to call p "informationally inconsistent" with q.  

Note that we insisted for ideals  X œ °P¥ that 1 – X.  This means that all our ideal  elements are "consistent".  Note, too, that one
notion of join and one notion of consistency work for all the semilattices in .  

And,  one hopes for making life seem a little simpler, the only difference  between  ideals  X œ °A¥ and other ideals  in Y œ °P¥ is
that these ideals are "generated"  by information confined to A.  Indeed,  for each X œ °A¥ we have X ã HX ›AL.
Section 3. Constructing domains.  We next have to ask an important question.

How do semilattices help in defining domain constructs?  Let us examine first the constructions of products and sums.  The key
idea  is that, since the isolated elements of a Scott domain determine  the whole domain,  one tries to define  the construct on the
isolated elements.  For products  and sums this proves to be quite easy.  

Because  P is being used as a universal domain, we need a kind of general  ordered  pair in the semilattice P.   A convenient one can
be obtained with properties as follows:

Theorem.  There is a recursive operation XXp, q\\ on P such that:
(i) XX0, 0\\ ã 0;
(ii) XXp, q\\ ã 1ó p ã 1 or q ã 1;
(iii) XXp0, q0\\Ó XXp1, q1\\ ã XXp0Ó q1, p0Ó q1\\; and
(iv) XXp0, q0\\ § XXp1, q1\\ ó p1 ã 1 or q1 ã 1 or @ p0 § p1 & q0 § q1 D.

Moreover,  the range of the operation is a recursive subset of P.

Before  indicating a proof, we introduce three definitions.

Definition.  For X, Y Œ P, let X µ Y ã 8 XXp, q\\ » p œ X & q œ Y <.
Definition.  H ã 8 XXp, q\\ » @p ã 0 & q ã 0D or @p ≠ 0 & q ≠ 0D <.
Definition.  For A, B œ , let A µs B ã 8 XXp, q\\ » p œ A & q œ B < › H.

From the theorem above about XXp, q\\ it follows that whenever  A, B œ , then A µ B œ  as well.  (Clauses (i) and (ii) of the
theorem come into play since all the subsemilattices of P have to use the same 0 and 1.)  Additionally  this product  definition is a
(computable and) continuous operation on the Scott domain .

Now, when we look at the elements of °A µ B¥, we find each  Z œ °A µ B¥ corresponds  uniquely to the pair of elements X œ °A¥
and Y œ °B¥, where X ã 8p » XXp, 0\\ œ Z< and Y ã 8q » XX0, q\\ œ Z<.  Moreover,  for any two X œ °A¥ and Y œ °B¥, we find that
Z ã HX µ Y L œ °A µ B¥.  Filling in some minor details here, we can then prove: 

Theorem.  °A µ B¥ is indeed isomorphic to the domain product of °A¥ and °B¥.
It  is easy to see that H œ .  A simple proof shows that °A µs B¥ is isomorphic to the familiar smash product of °A¥ and °B¥.
And,  in terms of semilattices we again have a (computable and)  continuous operation  on the Scott domain    with a simple
definition. 

We now have to return to defining  pairs and to proving the theorem.  So, we again think of P as a free Boolean  algebra,  say on
generators  v0, v1, …, vn, … .   Two homomorphisms of P can be defined .
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We now have to return to defining  pairs and to proving the theorem.  So, we again think of P as a free Boolean  algebra,  say on
generators  v0, v1, …, vn, … .   Two homomorphisms of P can be defined .

Let e0 : P Ø P be the (recursive)  Boolean monomorphism where e0HvnL ã v2 n.  

Let e1 : P Ø P be that other (recursive)  Boolean monomorphism where e1HvnL ã v2 n+1.  

Then, define  XXp, q\\ ã e0HpL Ó e1HqL.  
There  is only one part of one clause of the theorem that needs  a little thought to prove.  Thus, assume XXp0, q0\\ § XXp1, q1\\ and
both p1 ≠ 1 and q1 ≠ 1.  In view of the last assumption, there is a Boolean homomorphism h : P Ø P such that hHe1Hq1LL ã 0, but
hHe0HpLL ã p, for all p œ P.  

This would imply that p0 § p0Ó hHe1Hq0LL § p1.  By a similar argument we can prove under the same assumptions that q0 § q1.

We note next that the pairing operation on P can be used for other constructs on semilattices.

Definition.  For A0, A1, …, Am œ , the separated sum is defined  as:

A0 + A1 + … + Am ã
80<‹ 8 XXp, v0\\ » p œ A0<‹ 8 XXp, Ÿ v0Ó v1\\ » p œ A1<‹…‹ 8 XXp, Ÿ v0ÓŸ v1Ó…ÓŸ vm-1Ó vm\\ » p œ Am<

Definition.  For A0, A1, …, Am œ , the coalesced  sum is defined  as:

A0 +c A1 +c … +c Am ã HA0 + A1 + … + AmL› H.

We see that both sums produce  semigroups from semigroups, and both are continuous and computable operations on .  Both
operations can also easily be extended  to denumerably many terms.

Definition.  For A œ , the lift is defined  as:  A^ ã 80<‹ 8 XXp, 0\\Ó v1 » p œ A<.
Definition.  For A œ , the drop is defined  as:  AT ã 81<‹ 8 XXp, 0\\Ô v1 » p œ A<.
We see that lifts and drops  produce  semigroups from semigroups, and they are continuous and computable operations on .  We
have to leave to the reader  the task of checking  that these operations on semilattices produce  the desired  results for obtaining
these Scott domains:

°A0 + A1 + … + Am¥,  °A0 +c A1 +c … +c Am¥,  °A^¥, and  ±ATµ
with the right domain properties.  But we hope experience  with standard  Domain Theory makes this obvious.

Section 4. Function spaces as domain.  And now we come to the next question.

Is it just as easy to construct the semilattices corresponding to function spaces?   The answer is "not quite".  The author did not
find any Boolean  construction similar to the definition of XXp, q\\ to give the isolated elements of the space of continuous map-
pings from °P¥ into °P¥.  Instead,  the required  semilattice has to be constructed  formally  as a countable semilattice and then
embedded  into P.  Here is the final result of the embedding.

Theorem.  There is a recursive operation Hp fl qL on P ~ defined when p ≠ 1~ such that:
(i) Hp fl 1L ã 1;
(ii) fi

i<k
Hpi fl qiL ã 1 ï $ r ≠ 1. Í 8qi » pi § r< ã 1; and

(iii) Hr fl sL § fi
i<k

Hpi fl qiL ó fi
i<k

Hpi fl qiL ã 1 or s § Í 8qi » pi § r<.
Moreover,  the semilattice generated by the range of the operation is a recursive subset of P.

Suppose we have such an operation.  There are several  properties that follow.

Lemma.  Keeping in mind that, in using the operation H• fl •L, we always assume the first argument is not 1, then the following
properties hold:

(i) Hp fl qL ã 0óq ã 0;

(ii) fi
i<k

Hpi fl qiL ã 1 ó $ r ≠ 1. Í 8qi » pi § r< ã 1;

(iii) Hp fl qL ã 1óq ã 1;
(iv)  p0 § p1 ≠ 1 & q1 § q0 ïHp1 fl q1L § Hp0 fl q0L ; and

(v)  fi
i<k

Hp fl qiL ã Kp fl fi
i<k

qiO .
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(iii) Hp fl qL ã 1óq ã 1;
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Definition. For A, B œ , the normal function space basis is defined  as:

HA fl BL ã : fi
i<k

Hpi fl qiL " i < k @ pi œ A \ 81< & qi œ B D> .

Definition. For A, B œ ,  the strict function space basis is defined  as:

HA fls BL ã 80, 1<‹
: fi
i<k

Hpi fl qiL " i < k @ pi œ A \ 80, 1< & qi œ B \ 80, 1< D> 

.

On the basis of these definition, for A, B œ , it is clear  that both HA fl BL and HA fls BL are in  and that these are continuous
operations.

In  order  to understand  the connections  with function spaces,  take any continuous function F : °A¥ Ø °B¥, where  A, B œ  are
given.  Now, a continuous function is completely determined  by its action on isolated  elements, which, in the case of the first
space are the  p œ °A¥.  And these are in a one-one correspondence  with the p œ A \ 81<.  Let †F§ be the ideal  in °A fl B¥ gener-
ated by the set 

8Hp fl qL » q œ FH pL› B & p œ A \ 81< <.  
From  the  properties  of  the  operation  H• fl •L  mentioned  above,  we  then  check  that  for  p œ A \ 81<  and  q œ B  we  have
Hp fl qL œ †F§óq œ FH pL.  This shows that the functions F and the ideals of the form †F§ are in a one-one correspondence.

To show that every  element  of °A fl B¥  is of the proper  form, suppose F œ °A fl B¥.   Consider  the function FF : °A¥ Ø °B¥
defined  as 

FFHXL ã 8q » $ Hp fl qL œ F. p œ X < for X œ °A¥.  
After showing that this function is well defined,  it is obvious that it is continuous.  Moreover, †FF§ ã F.

Section 5. Recursive domain equations.  Inasmuch as  is an effectively  presented  algebraic  lattice, and because  constructors
for domains can be given by easy-to-define  continuous (and computable) mappings from  into itself, the standard  Fixed-Point
Theorem  for recursive definitions on domains can be applied directly to give recursive constructions of domains.

Indeed,  a quick look at the definitions of A µ B, A µs B, A + B,  A +c B,  A^, AT, A fl B, and  A fls B will show that each of these
operation take elements of  to elements of , and,  moreover,  , the semilattice of finite elements of , is also closed under these
operation.  Furthermore, on  the operations are continuous, and on  they are computable.  The same can be said of any composi-
tion of these operations.
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Do we not now have models for the l-calculus constructed from semilattices?   Of course!   There are many.  We could start
with any A œ  and solve the domain equation  D ã A +c HD fl DL to obtain a D œ .  Then °D¥ can be regarded  as a l-calculus
model.   There are many other (well known) uses of domain equations also leading to models.  Note, too, that °P¥ is itself a model,
inasmuch as °P fl P¥ is at once seen as a continuous retraction of °P¥.
Section 6. Some relations to the literature.   The author pointed out early on in the development  of Domain Theory the useful-
ness of universal domains of various kinds, and that approach  was elaborated  by many other authors~also for categories  beyond
that of Scott domains considered  here.

The universal domain for countably based algebraic lattices is Pw, the powerset  of the integers, which is "simpler" than the Scott
domain  °P¥ used here.   As a l-calculus  model, this is the graph model, originally proposed by Plotkin and analyzed  extensively
in:

G.D. Plotkin, Set-theoretical and other elementary models of the l-calculus, Theoretical Computer Science, vol. 121 (1993), pp. 351|409.

Plotkin also discusses  the so-called filter l-models  and Engeler-style models.  Some early references  to the works of the "Torino
School" are:

M. Coppo,  F.  Honsell,  M. Dezani-Ciancaglini  and G.  Longo,  Extended type  structures  and filter  l-models,  Logic  Colloquium ’82,  North-Holland,

Amsterdam 1984, pp. 241-262.

H. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, The Journal of Symbolic Logic,
vol. 48 (1983), pp. 931-940.

M. Coppo, Completeness of type assignment in continuous lambda models, Theoretical Computer Science, vol. 29 (1984), pp. 309-324.

Further references  can be found on Mario Coppo's home page.  In the last cited paper, he writes in his abstract:

Ë The completeness of Curry's rules for assigning type schemes to terms of the pure lambda-calculus has been proved by Hindley (1983) and 
Barendregt et al. (1983) using models of syntactic nature. A first result of this paper is a completeness proof with respect to the model Pw (as 
asked by Scott (1976)). Moreover, an extension of Curry's system in which type schemes can be assigned to the fixed point combinator is 
introduced, together with a notion of type semantics for which it is proved sound and complete (answering a question of Scott (1980)). Also in 
this case, completeness is proved with respect to the model Pw. All results also hold for the alternative notions of type semantics proposed by 
Hindley (1983) and Scott (1976, 1980).

Indeed,  the filter l-models  were originally invented to give a semantics to type assignments, and the work of Coppo and collabora-
tors ties together many results in this vein.  The author wishes to stress here,  however,  that the universal domain °P¥ used here
has a much broader  motivation.  It contains not only the data for the function-space construction, but~as shown above~ways of
constructing a large selection of other structures. The rules for the "step functions" in Section 4 have been noted by many authors,
but they were the key insights for the authors original realization that the category of countably based Scott domains is a cartesian
closed category.  Further investigations of l-calculus  model constructions have been presented in this recent  paper:

M. Hyland, M. Nagayama, J. Power, and G. Rosolini, A category theoretic formulation for Engeler-style models of the untyped  l-calculus, Electronic
Notes in Theoretical Computer Science, vol. 161 (2006), pp. 43|57.

They make this comment at the end of their paper:

Ë We close by explaining the programme of work which we initiate here. Filter lambda models as introduced by the Torino school [...] are usually 
taken to amount to a presentation of domain theoretic models. Certainly they are lambda models as they appear to come from categories with 
enough points.  But our analysis of the Engeler model is that it naturally arises from a category without enough points. So in our formulation it 
is naturally a lambda algebra in the established terminology. Now the Engeler model is taken to be part of the general family of filter models. 
So this raises (at least for us) questions along the following lines. Which filter models really are domain models (after all nobody doubts Scott’s 
D¶), and which are naturally something else? There seems much more to understand about concrete constructions of models for the lambda 
calculus (that is, in general about lambda algebras).

It is doubtful  that the present  paper contributes something new to their programme, but the author at least hopes the discussion
here shows that certain model constructions can be more easily explained than had been realized  before.
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