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We prove that the category of I-cocomplete separated Q-categories has bilimits of

expanding sequences. This result generalises on various levels the well-known theorem of

domain theory that guarantees existence of bilimits in the category of directed-complete

posets and Scott-continuous maps.

1. Motivation and related work

In 1973 William Lawvere published a paper (reprinted as (Lawvere 2002)) where he ex-

plained that partial orders and metric spaces are examples of categories enriched in a

closed category. Indeed, preorders are categories enriched over the two-element Boolean

algebra 2, while (generalized) metric spaces are categories enriched over ([0,∞],+). Law-

vere’s idea has been extremely influential in the forthcoming years. For example it led

to the development of a unified categorical/algebraic description of many familiar ele-

mentary structures in mathematics: topology, uniformity, order, metric, etc. (Clementino

and Hofmann 2003; Clementino and Tholen 2003; Clementino et al 2004; Hofmann 2007).

At the same time, the idea was taken up by computer scientists in the hope that since

posets have been so successfully used to create denotational semantics of programming

languages, generalized metric spaces (gmses) could be useful too, especially for expressing

quantitative properties of programs. As a consequence there are many studies of gmses

concerned not as much with generalizing metric spaces as with generalizing domains

and domain theory: (Rutten 1996; Flagg and Kopperman 1997; Flagg 1997) speak about

Alexandroff and Scott topologies for generalized metric spaces; (America and Rutten 1989;

Wagner 1994; Flagg and Kopperman 1995) are devoted to solving recursive domain equa-

tions in gmses; (Bonsangue et al 1998) proposes powerdomains for gmses; (Vickers 2005)

completes a gms using rounded filters of formal balls, (Zhang and Fan 2005; Waszkiewicz

2009) analyze approximation and continuity in Q-posets, etc. Our work contributes to the

same line of research: in this paper we present a generalisation of the limit-colimit coinci-

dence theorem from domain theory, which states, in the nomenclature of (Abramsky and

Jung 1994), that the category Dcpo has bilimits of expanding sequences. Concretely, we
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prove that the category of I-cocomplete separated Q-categories has bilimits of expanding

sequences.

One of the prominent features of our paper is that we work with Q-categories that are

cocomplete relative to a distinguished class of Q-ideals I. The idea of cocompleteness

relative to a class I of weights was developed in (Kelly 1982; Albert and Kelly 1998; Kock

1995; Kelly and Schmitt 2005; Kelly and Lack 2000; Schmitt 2006), and well-explained

in Lai and Zhang (Lai and Zhang 2007). Our approach is justified by the observation

that there is no canonical choice for Q-categorical counterparts of order-ideals. They can

be generalized to several non-equivalent concepts on the Q-level (e.g. forward Cauchy

nets, flat modules, FSW-ideals) which nevertheless yield the same definition in both the

metric and the order-theoretic case (Flagg et al 1996; Bonsangue et al 1998; Schmitt

2006; Vickers 2005). Therefore, one obtains different notions of cocompleteness for Q-

categories based on a specific choice of Q-ideals. The starting point of our paper is the

conviction that one does not have to make this choice right at the beginning, and —

as a consequence — we introduce Q-categories that are I-cocomplete (see Section 2.9).

Accordingly, the limit-colimit coincidence theorem that we prove in Section 3 is relative

to both the choice of the quantale and the choice of Q-ideals.

Finally, we should mention that our exposition, while categorical, is kept close to

domain-theoretic language of (Abramsky and Jung 1994; Gierz et al 2003). In fact, we

assume familiarity with domain theory and we most often motivate Q-categorical con-

structions with order-theoretic examples.
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2. Preliminaries

In this section we introduce all categories that will be studied in this paper. Our exposi-

tion is intended to highlight a way these categories emerge from generalizing order theory

and domain theory. For other introductions to the subject we encourage the reader to

consult for example (Hofmann 2007) or (Waszkiewicz 2009).

2.1. Quantales

In this paper Q = (Q,6,⊗,1) is a certain unital quantale (see e.g. (Rosenthal 1990)),

i.e.: (a) (Q,6) is a complete lattice; (b) Q is equipped with an associative, commu-

tative operation ⊗ : Q × Q → Q called tensor that preserves arbitrary suprema, i.e.

a⊗
∨
S =

∨
{a⊗ s | s ∈ S} for all a ∈ Q and S ⊆ Q; (c) Q has a distinguished element

1, called unit, that satisfies a⊗ 1 = a for all a ∈ Q; (d) 1 is the top element of Q.

The right adjoint to tensor is defined via: a⊗ b 6 c iff a 6 b ⊸ c, for all a, b, c ∈ Q. The
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least element of Q is denoted by ⊥.

Examples of quantales that satisfy (a)-(d):

Example 2.1. The two element lattice {⊥,1} with ⊥ 6 1, and with ⊗ being infimum

with respect to 6. It is denoted by 2.

Example 2.2. The unit interval [0, 1] in the order opposite to the natural one (6), with

the truncated addition as ⊗:

a⊗ b =

{
a+ b if a+ b 6 1,

1 otherwise
.

Here ⊸ is the opposite to the truncated substraction.

Example 2.3. The lattice [0,∞] in the order opposite to the natural one, with addition,

is a quantale such that ⊸ is the opposite to the truncated substraction.

Example 2.4. Any complete Heyting algebra with infimum as tensor and top element

as unit.

2.2. Q-relations

The category Q-Rel has sets as objects, and functions r : X × Y → Q as morphism; a

morphism r : X × Y → Q will be conveniently denoted as r : X −−7→ Y , so we can write

a composition of r : X −−7→ Y with s : Y −−7→ Z as:

X
�r // Y

�s // Z

with

(s · r)(x, z) =
∨

y∈Y

r(x, y) ⊗ s(y, z). (1)

The identities in Q-Rel are Q-relations defined for each set X as 1X : X −−7→ X :

1X(x, y) =

{
1 if x = y,

⊥ otherwise.

There is a functor Set → Q-Rel which maps objects identically and interprets a map

f : X → Y as a Q-relation f : X −−7→ Y :

f(x, y) =

{
1 if f(x) = y,

⊥ otherwise.
(2)

The hom-sets of Q-Rel carry the pointwise order of Q, so that Q-Rel becomes an or-

dered category. In fact, each hom-set of Q-Rel is a complete lattice.

The category Q-Rel has a contravariant involution (Q-Rel)op → Q-Rel which maps

objects identically and assigns to r : X −−7→ Y its opposite relation r◦ : Y −−7→ X . When
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applied to a map f , one obtains an adjunction f ⊣ f◦.

Recall that g ⊣ h in Q-Rel means that g · h 6 1 and h · g > 1.

2.3. Q-categories

Q-categories are structures that we can present as generalizations of preorders. Note

that a relation (i.e. a 2-relation) X : X−7→ X is a preorder iff 1X ⊆ X and X ·X ⊆ X .

Analogously, a Q-category is a set X with a Q-relation X : X −−7→ X satisfying:

(r)1X 6 X (reflexivity),

(t)X ·X 6 X (transitivity),

or, pointwise:

(r)1 6 X(x, x), for all x ∈ X ,

(t)X(x, y) ⊗X(y, z) 6 X(x, z), for all x, y, z ∈ X .

Let us now extend the analogy with preorders further: a Q-category X is separated if in

addition to (r) and (t) above, it satisfies:

(a)1 6 X(x, y) and 1 6 X(y, x) imply x = y for all x, y ∈ X .

For the purpose of this paper separated Q-categories will be called Q-posets.

The Q-relation X : X −−7→ X that we met in the definition of a Q-category is often

called the structure of X , e.g. in (Hofmann 2007), or a distance on X (Flagg et al 1996;

Bonsangue et al 1998), or a similarity on X (Heckmann 2007).

Next, a Q-functor f : X → Y is any function that satisfies f ·X 6 Y ·f . This means that

X(x, y) 6 Y (fx, fy) for all x, y ∈ X .

Q-categories and Q-functors form a category Q-Cat. The full subcategory of Q-Cat con-

sisting of Q-posets and Q-functors, denoted Q-Pos, is isomorphic to the category Pos

of posets if Q = 2, and to the category Met of quasimetric spaces (resp. bounded by 1)

if Q = [0,∞] (resp. Q = [0, 1]).

An important example of a Q-poset is Q itself with the structure Q(a, b) := a ⊸ b.

Also, for any Q-category X , its dual is defined as the set X together with the structure

X◦ : X −−7→ X . It is denoted as X◦.

Q-Cat is a symmetric monoidal closed category, with tensor product:

X ⊗ Y ((x, y), (x′, y′)) = X(x, x′) ⊗ Y (y, y′),

and internal hom:

Y X(f, g) =
∧

x∈X

Y (fx, gx).
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In particular:

X̂(f, g) =
∧

x∈X

(fx ⊸ gx), (3)

where X̂ denotes QX◦

.

Recall that g : X → Y ⊣ h : Y → X in Q-Cat iff g ◦ h ≤ 1Y and h ◦ g ≥ 1X in the

pointwise order on Y X iff Y (gx, y) = X(x, hy) for all x ∈ X and y ∈ Y .

2.4. Q-distributors

In order theory one often encounters relations that “distribute over the order”. To say

it precisely, we say that a relation ≺ distributes over ≤ when ≺ equals both ≺ · ≤ and

≤ · ≺. An example of such a relation is the way-below relation ≪ known from domain

theory. Now, if we lift the above definition to the Q-setting, we have:

Definition 2.5. A Q-distributor ϕ : X−→◦ Y is a Q-relation ϕ : X −−7→ Y with

ϕ ·X = ϕ = Y · ϕ.

For any fixed Q, Q-distributors form a category: The category Q-Dist has Q-categories

as objects and Q-distributors as morphisms. In particular, for any Q-category X , its

structure X : X −−7→ X is a Q-distributor (written thereafter as X : X−→◦ X) and as-

sumes the role of the identity morphism on X in Q-Dist. The composition of morphisms

is inherited from Q-Rel.

If f : X → Y is any function, then f∗ := Y · f and f∗ := f◦ · Y are Q-relations and one

easily verifies that:

Fact 2.6. Let X ,Y be Q-categories. The following are equivalent:

(i) f : X → Y is a Q-functor;

(ii) f∗ : X−→◦ Y is a Q-distributor;

(iii) f∗ : Y−→◦ X is a Q-distributor.

Observe that X = 1∗X = 1X∗.

Furthermore, for any map f : X → Y , in Q-Dist we have the adjunction:

f∗ ⊣ f∗. (4)

Note that g : X−→◦ Y ⊣ h : Y−→◦ X in Q-Dist iff g · h 6 Y and h · g > X .

It is well-known (see e.g. (Lawvere 2002), Sect.3) that the following are equivalent for

any Q-relation ϕ : X −−7→ Y between Q-categories:

(i) ϕ : X−→◦ Y is a Q-distributor;

(ii)ϕ : X◦ ⊗ Y → Q is a Q-functor.
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We will most often use the above result in the following simplified form:

Fact 2.7. Let ϕ : X −−7→ 1 be a Q-relation. The following are equivalent:

(i) ϕ : X−→◦ 1 is a Q-distributor;

(ii) ϕ : X◦ → Q is a Q-functor.

(We shall issue a gentle warning here: from now on we sometimes treat distributors as

Q-functors and vice versa, without any further reminder.)

Let us immediately see an important example: since the identity X : X−→◦ X is a Q-

distributor, it corresponds to the Q-functor X : X◦ ⊗ X → Q whose exponential mate
pXq : X → X̂ is the Yoneda Q-functor y : X → X̂ defined as yx := X(−, x). (Recall that

X̂ is defined in (3) and denotes the set of all Q-functors of type X◦ → Q, or equivalently

by Fact 2.7, the set of all Q-distributors of type X−→◦ 1.)

One calls a Q-functor f : X → Y fully faithful, if X(x, z) = Y (fx, fz) for all x, z ∈ X ;

this condition is equivalent to X = f∗ · f∗, which is not hard to prove. The Yoneda

embedding y : X → X̂ is fully faithful.

2.5. Lower and upper closures for Q-relations

Definition 2.8. Let X,Y be Q-posets. The lower closure of a Q-relation φ : Y −−7→ X is

↓φ = φ · Y , and the upper closure ↑φ = X · φ

Thus for example:

φ = φ · 1Y

(r)

6 φ · Y = ↓φ,

and

↓φ = φ · Y
(r),(t)

= φ · Y · Y = ↓↓φ,

as expected from the lower closure.

Note that if X = 1, then (in a pointwise notation):

↓φ(z) = (φ · Y )(z) =
∨

y∈Y

(Y (z, y) ⊗ φy), (5)

and so, if Y is a poset and φ ⊆ Y , then (5) reduces to z ∈ ↓φ ⇐⇒ ∃y (z 6 y ∧ y ∈ φ),

which is indeed the well-known definition of the lower closure.

Observe that a Q-relation φ is a Q-distributor iff φ = ↓↑φ (equivalently: φ = ↑↓φ), hence

the operation φ 7→ ↓↑φ can be seen as a way of turning Q-relations into Q-distributors.

2.6. The Yoneda Lemma

Lemma 2.9 (Yoneda). LetX be a Q-poset. For all x ∈ X and ψ ∈ X̂, ψ(x) = X̂(yx, ψ).
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Proof. Let x ∈ X .

ψ(x) = X(x, x) ⊸ ψ(x) [use (r)]

=
∧

y∈X(X(y, x) ⊸ ψ(y)) [put y = x; ψ : X◦ → Q is a Q-functor]

= X̂(yx, ψ) [def. X̂]

Observe that the statement of the Yoneda Lemma for Q = 2 reduces to:

x ∈ ψ ⇐⇒ ↓x ⊆ ψ,

where in this case ψ is some subset of a poset X .

2.7. Suprema

Definition 2.10. Let X be a Q-poset. A Q-functor φ ∈ X̂ has a supremum Sφ if for all

x ∈ X ,

X(Sφ, x) = X̂(φ, yx). (6)

In the poset case the above definition reduces to the well-known definition: a lower subset

φ of a poset X has a supremum Sφ iff

∀x ∈ X (Sφ ≤ x ⇐⇒ φ ⊆ ↓x).

One easily proves a ‘pointless’ (as opposed to ‘pointwise’) version of (6): a Q-functor

φ ∈ X̂ (considered as φ : 1−→◦ X̂) has a supremum x ∈ X iff

y
∗ · φ∗ = x∗. (7)

2.8. The generalized image-preimage adjunction

Let f : X → Y be a Q-functor and let f(φ) = φ · f∗ (the composition of Q-distributors

on the right), and f̂(ψ) = ψ · f∗. Then by (4) we can calculate:

(f ◦ f̂)(ψ) = ψ · f∗ · f
∗ ≤ ψ · Y = ψ

and

(f̂ ◦ f)(φ) = φ · f∗ · f∗ ≥ φ ·X = φ.

We have proved that:

f ⊣ f̂ (8)

holds in Q-Cat for the Q-functors f : X̂ → Ŷ and f̂ : Ŷ → X̂.

Let us look at the above definitions pointwise:

f(φ)(y) =
∨

x∈X

(φx⊗ Y (y, fx)), (9)

f̂(ψ)(x) = ψ(fx). (10)
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One now can easily see that in the case of posets (9) and (10) reduce to, respectively,

lower closure of the image of a monotone map f , and to the preimage of f . Consequently,

for posets the adjunction (8) becomes:

↓f [φ] ⊆ ψ ⇐⇒ φ ⊆ f−1[ψ]

for all lower subsets φ of X and all lower subsets ψ of Y . It is perhaps worth mentioning

that the Q-functor f̂ has a right adjoint as well as the left adjoint (see e.g. (Lawvere

2002), Sect.3. on Kan quantification) but we will not make any use of the former in this

paper.

Finally note the following characterisation of Q-functors from (Waszkiewicz 2009), which

on the poset level corresponds to a well-known behavior of monotone functions with

suprema of lower sets:

Proposition 2.11. Let X,Y be Q-posets. For a function f : X → Y the following are

equivalent:

(i) f is a Q-functor;

(ii) f ◦ y 6 y ◦ f ;

(iii) S(f(φ)) 6 f(Sφ) for all φ ∈ X̂ such that the suprema on the left and right-hand

side exist;

(iv) S ◦ f ◦ y = f .

2.9. Relative cocompleteness

In our paper we use the notion of relative cocompleteness for Q-categories developed in

(Kelly 1982), (Albert and Kelly 1998), (Kock 1995), (Kelly and Schmitt 2005), (Kelly

and Lack 2000), (Schmitt 2006) and explained in elementary terms in (Lai and Zhang

2007). Here is a summary of definitions needed for our paper.

Assume that a subcategory I of Q-Dist is given and that it contains all Q-distributors

of the form f∗ for a Q-functor f , and satisfies

if y∗ · ϕ ∈ I for all y ∈ Y , then ϕ ∈ I. (11)

This condition implies that I is fully determined by all Q-distributors of type X−→◦ 1.

Therefore, we will often only specify a set of Q-distributors of type X−→◦ 1 for each

Q-category X , with the understanding that I is generated by this collection of Q-

distributors with help of (11). However, in this case we must check that the resulting I

is indeed closed under composition.

We call a Q-category X I-cocomplete if X has all weighted colimits where the weight be-

longs to I (the definition of weighted colimits is standard, see e.g. (Lai and Zhang 2007)).

Note that in particular, by definitions above, the following hold:

(ax1) x∗ ∈ I for all x : 1 → X ,
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(ax2) φ · f∗ ∈ I for all φ ∈ I and all Q-functors f : X → Y ,

which in pointwise notation is:

(ax1) yx ∈ I for all x : 1 → X ;

(ax2) f(φ) ∈ I for all φ ∈ I and all Q-functors f : X → Y .

For a Q-poset X , we put

I(X) = {ψ : X−→◦ 1 | ψ ∈ I}

and

IS(X) = {ψ ∈ I(X) | ψ has a supremum in X},

both considered as Q-subcategories of X̂. For any x ∈ X , x∗ ∈ I(X), hence the Yoneda

functor yx = x∗ is of type X → I(X). Since y
∗ · (yx)∗ = y

∗ · y∗ · x∗ = x∗ for any x ∈ X ,

then by (7) we can further corestrict the Yoneda functor and obtain a Q-functor y : X →

IS(X). On the other hand, there is a map S : IS(X) → X which to each ψ ∈ IS(X)

assigns its supremum. It is in fact a Q-functor. Clearly then, y
∗ ·ψ∗ = (S(ψ))∗ = S∗ · ψ∗

for any ψ ∈ IS(X), i.e. y
∗ = S∗, which is equivalent to say that S is a left adjoint to the

restriction y : X → IS(X) of the Yoneda Q-functor: S ⊣ y. Using these observations we

can easily deduce an alternative definition of I-cocompleteness:

Definition 2.12. A Q-poset X is I-cocomplete iff there exists a Q-functor S : IX → X

such that

X(Sφ, x) = X̂(φ, yx)

for any φ ∈ IX and x ∈ X .

Definition 2.13. A Q-distributor φ is a Q-ideal on X if φ ∈ IX .

Example 2.14. For any Q, we can choose I = Q-Dist. Then I-cocomplete means

cocomplete.

Example 2.15. For Q = 2, we consider all Q-distributors of type X−→◦ 1 corresponding

to order-ideals in X , which indeed generate a subcategory I of Q-Dist. Then an ordered

set X is I-cocomplete if and only if each order-ideal on X has a supremum.

Example 2.16. For Q = [0,∞] or Q = [0, 1], we consider all Q-distributors of type

X−→◦ 1 corresponding to ideals in X in the sense of (Bonsangue et al 1998). Again,

they generate a subcategory of Q-Dist. These ideals correspond to equivalence classes of

forward Cauchy sequences on X . Hence, X is I-cocomplete if and only if each forward

Cauchy sequence on X converges.

Example 2.17. For any Q we can choose I to be the subcategory of Q-Dist consisting

of all right adjoint Q-distributors. Recall from (Lawvere 2002) that, for Q = [0,∞] and

for Q = [0, 1], a right adjoint Q-distributor X−→◦ 1 corresponds to an equivalence class

of Cauchy sequences on X . A metric space X is I-cocomplete if each Cauchy sequence

on X converges.

Example 2.18. For any completely distributive quantale Q and any Q-category X , a

Q-distributor ψ : X−→◦ 1 is a FSW-ideal if:
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1.
∨

z∈X ψ(z) = 1, and

2. for all ε1, ε2, δ ≺ 1, for all x1, x2 ∈ X , whenever ε1 ≺ ψ(x1) and ε2 ≺ ψ(x2), then there

exists z ∈ X such that δ ≺ ψ(z), ε1 ≺ ψ(x1) ⊗X(x1, z) and ε2 ≺ ψ(x2) ⊗X(x2, z).

One easily checks that the generated class is indeed a subcategory of Q-Dist. Note that

for Q = [0,∞] and for Q = [0, 1] FSW-ideals on X are in a bijective correspondence

with equivalence classes of forward Cauchy nets on X (Flagg et al 1996); for Q = 2,

FSW-ideals are characteristic maps of order-ideals on X . Therefore this example unifies

Examples 2.15, 2.16.

Example 2.19. For any Q we can choose I to be the subcategory of Q-Dist consisting

of all Q-distributors of type X−→◦ 1 that satisfy:

1.
∨

x φ(x) = 1, and

2. φ(x) ⊗ φ(y) 6
∨

z(φ(z) ⊗X(x, z) ⊗X(y, z)).

This definition appears in (Zhang and Fan 2005) and (Lai and Zhang 2007).

Further examples are mentioned in (Schmitt 2006; Vickers 2005).

It is important to notice that Q is itself an I-cocomplete Q-poset. Indeed, if ψ ∈ IQ and

a ∈ Q, then the calculation:

Q(
∨

b(φb⊗ b), a) =
∧

b(φb ⊸ (b ⊸ a))

=
∧

b(φb ⊸ y(a)(b)))

= Q̂(φ, ya)

shows that we can define Sφ :=
∨

b(φb⊗ b). One can also show that since unit is the top

element of Q, then Sφ = φ(1), which gives an alternative description of supremum.

2.10. Scott-continuous Q-functors

Definition 2.20. A Q-functor f : X → Y is Scott-continuous if, for all φ ∈ IX , where

φ has a supremum in X , f(φ) has a supremum in Y , and, moreover,

f(Sφ) = S(f(φ)). (12)

Equivalently, f is Scott-continuous if and only if f preserves all colimits with weight in

I which exist in X . Clearly, every cocontinuous Q-functor is Scott-continuous. For Q = 2

and FSW-ideals Scott-continuity has the usual meaning. For Q = [0, 1] or Q = [0,∞] and

the choice of Q-ideals from Example 2.16, f is Scott-continuous if and only if f preserves

limits of forward Cauchy sequences.

Let us denote by Q-Cocont the category of I-cocomplete Q-posets with Scott-continuous

Q-functors as morphisms. Then the following are well-known: see e.g. (Albert and Kelly

1998), (Kelly 1982), (Kelly and Schmitt 2005), also Thm. 4.7. of (Lai and Zhang 2007):

Proposition 2.21. Let Y be a I-cocomplete category. Then any Q-functor f : X → Y

uniquely extends to a Scott-continuous Q-functor F : I(X) → Y .
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Theorem 2.22. The inclusion functor Q-Cocont → Q-Cat has a left adjoint which

sends a Q-category X to I(X) and a Q-functor f to f .

3. The limit-colimit coincidence for Q-Cocont

Our goal in this paper is to show a generalisation of Theorem 3.3.7 of (Abramsky and

Jung 1994) described there as: one of the fundamental tools of domain theory, which

plays its most prominent role in the solution of recursive domain equations. Our proof is

slightly subtler that the original one but otherwise follows it quite closely. Let us repeat

that the generalization is made on two levels: we replace posets with Q-posets, and fur-

thermore, our version of the result is relative to the definition of ideals.

Let us recall that every Q-poset X is also a partial order since we can define:

x 6X y iff X(x, y) = 1.

The statement and the proof of our theorem crucially use the induced order. This has the

consequence that our theorem will trivialize whenever the order trivializes, for example

when we work with [0, 1]-Cocont and choose our diagram to consist of complete metric

spaces. However, for nonsymmetric spaces the theorem shows its full strength.

Finally, in order for the proof to work we must have at our disposal an ideal over the

set indexing the diagram. The easiest solution that would guarantee existence of such an

ideal is the condition that explicitly augments (ax1)-(ax2):

The Q−functor ψ : N
◦ → Q given by ψ(n) := 1 for all n ∈ N is an ideal. (ax3)

Here N is the Q-poset defined as N(n,m) := 1 iff n ≤ m, and N(n,m) := ⊥ otherwise.

One can show that (ax3) is satisfied by any of the concrete definitions of ideals that we

discussed in Section 2.9. We assume (ax3) from now on.

Lemma 3.1. Let X,Y be Q-posets and assume that Y is I-cocomplete. Suppose that

(fn : X → Y )n∈N is a chain of Q-functors, i.e. for all n ∈ N, fn 6 fn+1 with respect to

the induced order 6 on Y X . Then:

(i) f :=
∨

n∈N
fn exists and is given by f(x) := S(Fx(ψ)), for x ∈ X , where ψ is chosen

as in (ax3), and Fx : N → Y is Fx(n) := fn(x);

(ii) furthermore, Y (fx, y) =
∧

n∈N
Y (fn(x), y) for all x ∈ X and y ∈ Y ;

(iii) furthermore, if all fn’s are Scott-continuous, then f is Scott-continuous, too.

Proof. Fix x ∈ X . Since Fx(n) = fn(x) 6 fm(x) = Fx(m) for all n 6 m, then

Fx : N → Y is a Q-functor. Therefore by (ax2), Fx(ψ) is an ideal on Y , and since Y is I-

cocomplete, the supremum S(Fx(ψ)) exists and is an element of Y . Now, if x, z ∈ X , then

Y (fx, fz) > Ŷ (Fx(ψ), Fz(ψ)) =
∧

n∈N
Fz(ψ)(Fx(n)) =

∧
n∈N

∨
m∈N

Y (Fx(n), Fz(m)) >∧
n∈N

Y (Fx(n), Fz(n)) =
∧

n∈N
Y (fn(x), fn(z)) > X(x, z). Therefore f is a Q-functor.

For (ii), Y (fx, y) = N̂(ψ, F̂x(yy)) =
∧

n F̂x(yy)(n) =
∧

n Y (fn(x), y) for all x ∈ X and

y ∈ Y .
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Clearly for n ∈ N, Y X(fn, f) =
∧

x∈X Y (fn(x), fx) >
∧

x∈X

∧
n∈N

Y (fn(x), fx) =∧
x∈X Y (fx, fx) = 1, hence fn 6 f for all n ∈ N. Now, suppose that fn 6 g, n ∈ N, for

some g : X → Y . Then 1 =
∧

x∈X

∧
n∈N

Y (fn(x), g(x)) =
∧

x∈X Y (fx, gx) = Y X(f, g).

This proves that f =
∨

n∈N
fn, i.e. part (i).

Lastly, suppose that all fn’s are Scott-continuous. Fix y ∈ Y and φ ∈ I(X) that

has a supremum Sφ in X . Then Y (f(Sφ), y) =
∧

n Y (fn(Sφ), y) =
∧

n Y (Sfn(φ)), y) =
∧

x∈X(φx ⊸
∧

n Y (fn(x), y)) = X̂(φ, f̂(yy)) = Y (Sf(φ), y). Since y is arbitrary, f(Sφ) =

Sf(φ), as required.

Theorem 3.2. Consider the expanding sequence in Q-Cocont:

D0

e10 //
D1

p01

oo
e21 //

D2

e32 //

p12

oo D3
p23

oo
//
...oo (a)

where (b)-(f) hold for all m ≤ n ≤ k ∈ N:

(b) pnn = enn = 1Dn
,

(c) ekn ◦ enm = ekm,

(d) pmn ◦ pnk = pmk,

(e) enm ◦ pmn 6 1Dn
(for convenience by 6 we denote the induced order 6[Dn→Dn]),

(f) pmn ◦ enm = 1Dm
.

Then there exists an I-cocomplete Q-poset D together with morphisms:

Dn

en //
D

pn

oo

for all n ∈ N such that:

(g)D is the limit of the diagram of projections:

D0 D1
p01

oo D2
p12

oo D3
p23

oo ... ,oo (†)

(h)D is the colimit of the diagram of embeddings:

D0

e10 //
D1

e21 //
D2

e32 //
D3

// ... , (††)

(i) for all n ∈ N, en ◦ pn 6 1D,

(j) for all n ∈ N, pn ◦ en = 1Dn
.

Remark: Note that assumptions (e) and (f) state (in the nomenclature of domain theory)

that for every n,m ∈ N, maps

enm : Dm ⇄ Dn : pmn

form e-p pairs; in particular enm ⊣ pmn.
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Proof. We start by a general observation that the inclusion functor Q-Cocont →

Q-Cat not only has a left adjoint (Thm. 2.22) but is monadic. Since Q-Cat is complete,

Q-Cocont is complete as well. Thus we know that the limit of (†) exists, and in fact is

given by:

D :=

{
(x0, x1, ...) ∈

∏

i∈N

Di

∣∣∣∣ pii+1(xi+1) = xi

}
.

For completeness of the argument, we include an explicit proof of this fact:

Clearly, D is a Q-poset when considered with the structure inherited from the product∏
iDi. Next, D is I-cocomplete. Indeed, take φ ∈ ID. We claim that Sι(φ) is the

supremum of φ. Here ι : D →
∏

i Di is the inclusion map (clearly ι is a fully faithful

Q-functor). By (ax2), ι(φ) ∈ I(
∏

iDi). Since
∏

i Di is I-cocomplete, Sι(φ) exists. Then:

pii+1(πi+1(Sι(φ))) = S(pii+1(πi+1(ι(φ)))) [projections are Scott-continuous]

= S(pii+1 ◦ πi+1 ◦ ι(φ)) [(·) is a functor]

= S(πi ◦ ι(φ)) [def. of D]

= πi(Sι(φ)) [πi is Scott-continuous].

Therefore Sι(φ) ∈ D. Moreover, for any x ∈ D:

D(Sι(φ), x) =
∏

i Di(Sι(φ), ιx) [def. of D]

=
∏̂

i Di(ι(φ), y(ιx)) [
∏

iDi is I-cocomplete]

=
∏̂

i Di(ι(φ), ι(yx)) [ι ◦ y = y ◦ ι]

= D̂(φ, yx) [ι is fully faithful]

We can now conclude that Sι(φ) is the supremum of φ and hence that D is an I-

cocomplete Q-poset.

Secondly, for every i ∈ N we define pi : D → Di by:

pi := πi |D . (13)

Observe that (D, pi : D → Di) is a cone over the diagram (†), since pi’s are Scott-

continuous Q-functors and they commute with pmn (m ≤ n) by the definition of D.

Suppose now that (Z, gi : Z → Di) is another cone. Then it is easy to see that the unique

mediating morphism g : Z → D is given by

g(z) := (g0(z), g1(z), ...)

The map g is a composition of Scott-continuous Q-functors, so it is itself a Scott-

continuous Q-functor. We have now proved (g), i.e. that D is the limit of the diagram

(†) of projections.

We now claim that for

τji :=

{
pji for j ≤ i,

eji for j > i



M. Kostanek and P. Waszkiewicz 14

(Di, τji : Di → Dj) is a cone over (†) for all i ∈ N. (14)

In other words, we need to show commutativity of all triangles of the form:

Di

τki

��

τli

  B
BB

BB
BB

B

D0
...oo Dk

oo Dlpkl

oo ...oo

Fix k < l. If l ≤ i, then pkl◦τli = pkl◦pli = pki = τki. If k ≤ i < l, then pkl◦τli = pkl◦eli =

pki ◦ (pil ◦eli) = pki = τki. Otherwise i < k and then pkl ◦τli = (pkl ◦elk)◦eki = eki = τki.

This proves (14).

Since each Di is a cone and D is a limit of (†), then for all i ∈ N there exists a unique

morphism ei : Di → D such that

Di

τji //

ei

��

Dj

D

pi

>>||||||||

commutes, i.e. for all i ∈ N:

ei(x) := (τji(x))j∈N. (15)

Our next goal is to demonstrate that (D, ei : Di → D) is a cocone over the diagram of

embeddings (††), i.e. that every diagram for k < l (the case k = l is clear) commutes:

D

Dk

ek

OO

elk

// Dl

el

aaCCCCCCCC

or that for all j ∈ N:

τjl ◦ elk = τjk. (16)

For l < j, τjl◦elk = ejl◦elk = ejk = τjk. For k < j ≤ l, τjl◦elk = pjl◦elk = (pjl◦elj)◦ejk =

ejk = τjk. For j ≤ k, τjl◦elk = pjl◦elk = pjk◦(pkl◦elk) = pjk = τjk. Therefore (16) holds.

Next step is to show (i): Let z = (zj)j∈N ∈ D. Then (en ◦pn)(z) = en(zn) = (τjn(zn))j∈N.

However for j ≤ n, τjn(zn) = pjn(zn) = zj and for j > n, τjn(zn) = ejn(zn) =

ejn(pnj(zj))
(e)

6 zj. In any case, we can conclude (en ◦ pn)(z) 6 (zj)j∈N = z, as re-

quired.

Part (j) is clear, since pn ◦ en = πn |D ((τjn)j∈N) = τnn = pnn

(b)
= 1Dn

.

It now remains to see (h), i.e. that D is the colimit of the diagram (††) of embeddings.
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We define a family of functions indexed by elements of D. Let x ∈ D. Then Fx : N → D

is given by:

Fx(n) := (en ◦ pn)(x).

Since for n ≤ m, en ◦ pn = em ◦ emn ◦ pnm ◦ pm 6 em ◦ pm, the collection (en ◦ pn)n∈N is

a chain in DD. Therefore, by the proof of Lemma 3.1, Fx is a Q-functor.

Next, we will prove that (for ψ as in (ax3)):

S(Fx(ψ)) = x. (17)

For,

pn(S(Fx(ψ))) = S(pn ◦ Fx(ψ)) [pn is Scott-continuous]

= S(
∨

i(ψ(i) ⊗Dn(−, pn ◦ Fx(i)))) [def. pn ◦ Fx]

= S(
∨

i(Dn(−, pn ◦ ei ◦ pi(x)))) [def. Fx, def. ψ]

= S(Dn(−, pn(x))) [pn ◦ ei ◦ pi = pn for all n 6 i ∈ N]

= S(y(pn(x))) [def. y]

= pn(x) [S ⊣ y]

for all n ∈ N, and hence (17) holds.

Take any other cocone (gi : Di → G | i ∈ N) of the diagram (††) of embeddings. We thus

have for all i 6 j:

gj ◦ eji = gi. (18)

We shall prove that the unique mediating morphism g : D → G is given by:

g(x) := S(Hx(ψ))

where Hx : N → G is

Hx(n) := gn ◦ pn(x).

By (18) it is easy to see that (gn ◦pn)n∈N is a chain in GD. Therefore, by Lemma 3.1, Hx

is a Q-functor, Hx(ψ) is an ideal, and g : D → G is a Q-functor given by g =
∨

n(gn ◦pn).

Moreover, since all maps gn ◦ pn, n ∈ N, are Scott-continuous, g is Scott-continuous, too.

We need to show that for all i ∈ N, gi = g ◦ ei. Let x ∈ Di.

g ◦ ei(x) = S(Hei(x)(ψ)) [def. g]

= S(
∨

n∈N
(ψ(n) ⊗G(−, Hei(x)(n)))) [def. Hei(x)]

= S(
∨

n∈N
G(−, gn ◦ pn ◦ ei(x))) [def. ψ, def. Hei(x)]

= S(G(−, gi(x))) [gn ◦ pn ◦ ei 6 gi, also n = i]

= Sy(gi(x)) [def. y]

= gi(x). [S ◦ y = 1]

We will finish the proof by showing that the map g : D → G is unique. Suppose that

g′ : D → G satisfies g′ ◦ ei = gi for all i ∈ N. Then g′ ◦ ei ◦ pi(x) = gi ◦ pi(x) for all
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x ∈ Di. By definitions of Fx and Hx, this is the same as: g′ ◦ Fx(i) = Hx(i), and con-

sequently, Sg′ ◦ Fx(ψ) = SHx(ψ). By Scott-continuity and (17), g′(x) = g′(SFx(ψ)) =

Sg′ ◦ Fx(ψ) = SHx(ψ) = g(x).

For FSW-ideals (Example 2.18) and Q = [0,∞] we obtain the following:

Corollary 3.3. The category of forward Cauchy complete quasi-metric spaces and non-

expansive maps has bilimits of expanding sequences.

4. Future work

There is some evidence that parts of domain theory can also be lifted to yet more general

setup of (T,Q)-categories introduced by (Clementino and Hofmann 2003; Clementino

and Tholen 2003), who built on earlier work of (Barr 1970) and (Manes 1974). In (T,Q)-

categories the quantale Q is made compatible with a Set-monad T. This type of further

generalization of Q-categories offers considerable research challenges but, on the other

hand, promises some satisfactory general results. For example the category of (U,2)-

categories (U is the ultrafilter monad) is isomorphic to Top, the category of topological

spaces. It seems plausible that a systematic research in this direction will result in a

deeper understanding of the links between topology, order and distance.
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