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One natural way to generalize Domain Theory is to replace partially ordered sets by

categories. This kind of generalization has recently found application in the study of

concurrency. An outline is given of the elegant mathematical foundations which have

been developed. This is specialized to give a construction of cartesian closed categories of

domains, which throws light on standard presentations of Domain Theory.

Introduction

This paper is one of what I hope will be a series written in conscious homage to Kreisel’s

paper (Kreisel 1971). That paper was prepared for the European Meeting of the ASL

in Manchester 1969, was widely aired at the time and was finally published in the pro-

ceedings in 1971. It is a survey of the state of Recursion Theory and its generalizations

around 1970. At one level it is a remarkable attempt to influence the development of logic,

providing concrete proposals and problems as well as more general reflections on future

directions. At times, for example in connection with the theory of admissible sets, the

discussion foreshadows developments whose significance was only later fully appreciated.

At other points, for example in connection with axiomatics, an approach is promoted

which has been explored extensively but has in my view been less successful. (It is of

course a positive feature that suggestions can even now be regarded as contentious.)

However one can read the paper on another level as providing a case study of the value

of generalization in a specific area of mathematics. This reading was the inspiration for

the talk which I gave in the Domains IX Workshop at the University of Sussex.

Aims of generalization

The intellectual range of Kreisel’s paper is such that any overview is out of the question.

However in addition to a wealth of technical observations and suggestions the paper

contains a series of compelling reflections on the value of generalization based on the

then available experience with Generalized Recursion Theory. Kreisel distinguishes four

main aims of the generalization of recursion theory, each loosely associated with specific

generalizations. The aims are the following.

(a) Advancing other parts of logic and mathematics. Today this seems to be the most

successful of the aims. The associated generalizations are those inspired by the model
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theoretic ideas of explicit and implicit definability. Here one finds Kreisal’s key idea, that

in certain generalizations one generalizes not only the obvious notions (recursive, semi-

recursive) but also the notion of finiteness (typically replaced by a notion of definability).

This played out to good effect in what were then the developing theories of admissible

sets and of inductive definitions. Generalizations in which the idea of finiteness is itself

generalized have worn well. Moreover the basic insight has wider application. Finiteness

manifested in compact spaces and proper maps plays an analogous role in algebraic

geometry and in various natural formulations of constructive topology.
(b) Understanding the mathematical character of ordinary recursion theory. This aim

seems to me less successful than the first, but it is hard to explain why. The theories

first considered under this heading are higher type recursion theories. Kleene’s recursion

theory on total functionals of finite type has perhaps become a minority interest notwith-

standing recent work of John Longley (Longley 2007). But Kreisel starts with Platek’s

recursion theory on partial functionals of finite type (Platek 1966) and this is close to

being a study of PCF in a now less familiar context. Since continuous (or perhaps better

finitely based) models of PCF are an established part of the computer science culture,

one can see that this line of enquiry has proved valuable. However it does not seem to

have provided much fresh insight into ordinary recursion theory. The same could be said

about axiomatic recursion theory which Kreisel considers both in this context and in the

context of theories of self-application (see below).
(c) Analysis of the general concept of computation. This is a lively area today, and those

involved one way or another in the current hot topic of quantum computation might

profit from reading Kreisel’s cool observations on the general notion computation and its

relation to the physical. Alongside considerations of this by now familiar kind, there is a

discussion of the idea of extensions of Church’s thesis to arbitrary structures. I suppose

that the connection is intentional, but the issues of explicit and invariant definability

which Kreisel considers may not be so familiar. I think that a pity.
(d) Other uses. This is not as it appears a catch-all category. The thought seems to be

that there are uses which emerge from reflection on recursion theory in a general sense.

Kreisel talks also of incidental uses. He picks out two.

(i) A formal theory of self application. Kreisel focuses on logical systems which permit

self-application. This general line has been pursued energetically by others though not

with outcomes envisaged by Kreisel. Curiously one section on incidental uses closes with a

very brief discussion of Scott’s then recently introduced D∞ model of the lambda calculus.

Thus Kreisel’s paper contains a glimpse of Domain Theory, a topic which has arguably

proved more widely influential than anything else in the paper. Kreisel is particularly

struck by what he takes to be the genuinely mathematical nature of the theory, the issue

addressed in this paper.
(ii) Axiomatic analysis of kinds of evidence. This is accompanied by reflections on gener-

alizations of recursion theory to various (typically enumerated) structures. Here I sense

a prejudice of the time. Kreisel was himself acutely aware of the issues concerning choice

of data which are needed to make sense of and then exploit a constructive point of view.

But there is absolutely no encouragement to think about kinds of evidence in that spirit.

I am naturally sensitive to this. In (Hyland 1982) I hoped inter alia to promulgate the
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view that recursive mathematics and in particular recursive analysis has a natural home

in the effective topos. The book (van Oosten 2008) contains a more extensive account.

It would not be sensible to write a survey of generalizations of Domain Theory as

Kreisel did for Recursion Theory. That would be an enormous task. However I believe

that Kreisel’s idea to reflect on lessons learnt from generalizations is very pertinent to

Domain Theory. When I gave the talk on which this paper is based I envisaged at most

this paper. But I have since come to see a number of further issues which are illuminated

by recent expereience. So I have taken the risk of announcing this as one of a series. It

may help put that in context if I briefly try to match Kreisel’s aims with some aims for

the generalization of Domain Theory in Computer Science.

(a) Advancing other parts of computer science. The primary or original aim of Domain

Theory was to provide semantics for higher-order functional programming languages,

and some generalizations are driven by that. However the categorical generalizations

from which I start are in themselves motivated by another area of Computer Science viz

the study of concurrent systems. (Cattani and Winskel 2005) gives both the basic idea

and technical developments. So the aim of advancing other parts of the subject is more

easily successful than it was for Recursion Theory.

(b) Understanding the mathematical character of Scott’s domain theory. Ideas about do-

mains were originally presented in terms of topology or of lattices: that is the starting

point of the classic paper Scott’s Continuous Lattices (Scott 1976). So the mathemati-

cal character of Domain Theory seems evident, to the extent that one important focus

of research since the early days has been to reduce the mathematical requirements of

the theory. (A delightful new approach was presented by Dana Scott at the Domains

IX Workshop. I hope that it will be made readily available soon.) However recent expe-

rience with generalizations suggests a different way into the traditional theory and its

applications. I sketch this unashamedly mathematical point of view in Section 4.

(c) Analysis of a general notion of approximation. Domain Theory can be based on a

notion of approximation of information. The Information Systems approach to the subject

makes that explicit. However generalizations of the notion of domain show clearly that

there are a number of interesting notions of approximation. I shall not be pursuing this

here.

(d) Other uses. Domain Theory has stimulated various incidental lines of enquiry. I

mention two.

(i) Models of the lambda calculus. The main modern tools are the filter models. The

classic papers are (Barendregt et al 1983) and (Coppo et al 1984). See (Berline 2000)

for a survey of models of this general kind. Filter models are related to domains, but

the connections are not spelt out in the literature. The paper (Hyland et al 2006) claims

that Engeler models should not be considered as domains, and initiates a programme to

explore the nature of filter models. I hope to return to this.

(ii) Analysis. Prima facie Domain Theory deals with issues of approximation, the territory

of analysis. There is a tradition of work in this direction (Edalat 1997) under the banner

Exact Real Analysis, and Abstract Stone Duality has recently provided another approach:

(Bauer and Taylor 2009) contains a detailed account of recent thinking. However the
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impact of these ideas on the theory and practice of computational or numerical analysis

has up to now been disappointing.

There is a good deal of material here which should illuminate the mathematical back-

ground to Domain Theory. In this paper I hope to show that one style of generalization

leads naturally to new understanding of the basic theory. But I see opportunities to push

this moral further.

Generalizing Domains

By a domain, at least in the context of the series of Domains Workshops, one generally

means a Scott Domain, that is an algebraic, bounded complete cpo. (Recall if need

be that by an accident of terminology a cpo is a directed complete partial order with

least element). The category of Scott domains and (Scott) continuous or directed-sup

preserving maps is a convenient setting for a considerable range of semantic purposes.

Scott domains are closely related to algebraic lattices: any Scott closed subset of an

algebraic lattice is a Scott domain, while adding a necessarily open point as top element

to a Scott domain gives an algebraic lattice. For reasons of mathematical simplicity I

shall concentrate on algebraic lattices. and leave for another occasion the question of

extending the ideas to incorporate Scott domains.

The standard notion of Scott domain can be generalized in many ways.

— One can keep the same topological or ordered setting, and extend the objects to be

considered. The best known example is the category of SFP domains first introduced

by Plotkin in (Plotkin 1976).

— There are notions of domain in which the order is not one of increase of extensional

information. Examples are stable domains and strongly stable domains. The idea

originates with Berry (Berry 1979). People sometimes talk of refinements of the notion

of domain. Linear Logic (Girard 1987) has its roots in a model of this kind. As

explained in (Taylor 1990), Stable Domain Theory has interesting connections with

the work of Diers (Diers 1980) in categorical algebra.

— There are notions of domain with more than one order, typically both a Scott order

and a stable order. This idea also appears in Berry’s thesis (Berry 1979), and was then

analysed in terms of event structures by Winskel (Winskel 1980). The subject was

explored further in (Winskel 1994) and the connection with Linear Logic was spelled

out in (Plotkin and Winskel 1994) and then in greater detail in (Curien, Plotkin,

Winskel 2000).

— Axiomatic Domain Theory provides axiomatizations of categories of domains. (Fiore,

Plotkin, Power 1997) gives a non-standard example of a category satisfying a sensible

axiomatization. The subject is related to Synthetic Domain Theory (Hyland 1991;

Taylor 1991; Reus and Streicher 1999). (Fiore and Plotkin 1997) gives one angle

on the connection. These approaches have to some extent been subsumed by Paul

Taylor’s Abstract Stone Duality (Taylor 2000; Taylor 2002a; Taylor 2002b), a further

generalization.

There is a good deal to be learnt from each of these generalizations. However in this
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paper I shall consider generalizations in a different spirit from any of the above, the

generalization from domains as posets to domains as categories. This is a very natural

generalization, and one with a long history. The first person to have taken the idea

seriously seems to have been Daniel Lehmann who gave a categorical version of the Smyth

power domain (Lehmann 1976). Some time after Lehmann’s work and independently of

it a number of people looked at generalizations of domains for their own sake. The most

systematic was Paul Taylor, who in the late 1980s gave categorical generalizations of

much of the material of his thesis (Taylor 1986), and also of much analogous Stable

Domain Theory. This work is largely unpublished, but some draft papers are available

on Taylor’s website. Other work of this period includes (Coquand, Gunther, Winskel

1989) in the stable tradition and (Hyland and Pitts 1989) for the categorification of

algebraic lattices.

More recently Glynn Winskel has been promoting the use of categorifications of Do-

main Theory and in particular the use of presheaf categories in the study of concurrency.

There is a tenuous link with Lehmann’s original idea. Abramsky (Abramsky 1983) shows

that Lehmann’s categorified (Smyth) powerdomain is a completion under indexed prod-

ucts, while presheaves are completions under colimits. For an extensive treatment of

Winskel’s general ideas and some deep results on bisimulation see (Cattani and Winskel

2005). The mathematical background to that paper is explained in the paper (Fiore et

al) in preparation, and it is that background which inspires this paper.

Mathematical Understanding

50 years on, Kreisel’s sections on the mathematical understanding of Recursion Theory

no longer appear as compelling as they once did. But the idea that one plausible aim of

generalization is that it can lead to an improvement of mathematical understanding still

seems right. In this paper I describe in outline a case study.

What is Domain Theory? Or perhaps better, what are domains and how best to treat

them? I intend the questions not in the epistemological sense - how best to teach Domain

Theory to beginning computer scientists. Rather I intend the logical or better conceptual

sense - how best to see domains within the wider mathematical universe. That is not a

new question: in the early days one wondered whether it was best to think of domains

as particular kinds of lattice or particular kinds of space. My aim is to address from one

particular direction the general question of where (categories of) domains come from.

Outline of the paper

The main section of this paper is Section 4 in which I sketch the approach to Domain

Theory which results from reflection on recent experience with categorical generalizations.

For simplicity I treat the case of algebraic lattices, but I put that theory in a general

categorical context. I treat only traditional issues (cartesian closure and fixed points)

and ignore recent developments (differential structure).

I start by giving some categorical background in Section 1. Then by way of a warm-up

Section 2 gives a sketch of the main features of the Relational Model for Linear Logic
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from a categorical point of view. One can regard recent work giving higher dimensional

generalizations of Domain Theory as coming from a categorification of the Relational

Model, and Section 3 describes some of this work. It is a mere sketch intended simply

to make plausible the claim that the new mathematical analysis of Domain Theory itself

is inspired by the recent generalizations. Hence I have tried to keep my main Section 4

independent of higher-dimensional category theory. I close the paper with suggestions as

to lessons to be learnt.
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1. Categorical background

I am going to give a rational reconstruction of Domain Theory from what is, I believe,

an unfamiliar point of view, but one in which I hope to interest those concerned with

the theory and applications of domains. As a result I have been exercised as to what to

expect from the reader. It seems reasonable to assume that any reader of this paper will

know the basics of the classical treatment of Domain Theory if not from original papers

then from some textbook such as Winskel’s attractive and accessible account (Winskel

1993). So very likely they will know enough Category Theory to understand what is

meant by a category of domains being cartesian closed. But it does not seem wise to rely

on much more.

I cannot provide all background for beginners in Category Theory. They should find

the introductory text (Awodey 2006) helpful: it will get them as far as the treatment

of algebra via monads. Mac Lane’s book (Mac Lane 1971) remains a standard reference

and gives relevant material not only on monads but also on monoidal categories. One

can find there also the basic fact that filtered colimits commute with finite limits in the

category Set of sets and functions. Other material which is needed for the story seems

less easily accessible and less familiar and I give some sketches in this section.
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1.1. Distributive laws

This paper rests in the first place on standard observations about distributive laws be-

tween monads. For a fuller account and general background on monads see (Barr and

Wells 1984).

Theorem 1.1. Let P and M be monads on a category C. Then the following data are

equivalent.

1 A lifting of the monad P to the category M -Alg of M -algebras.

2 A distributive law λ : MP → PM in the sense of Beck (Beck 1967).

3 An extension of M to the Kleisli category Kl(P ) of P .

The significance of this theorem is the following. Suppose that one wishes to extend a

monad M to a Kleisli category Kl(P ). That seems complicated, but a lift of the monad

P to the category M -Alg can be found by routine considerations. So one can apply the

Theorem.

The equivalence of 1 and 2 above is standard (it appears in (Barr and Wells 1984) for

example) and the full result must in some sense be folklore. However its significance does

not seem to be well known, and the best I can do by way of a reference is (Hyland et al

2006).

1.2. Commutative and monoidal monads

I make use of some facts about commutative monads which are not readily available.

Most of what I need is in the original series of papers (Kock 1970; Kock 1971a; Kock

1971b; Kock 1972) by Anders Kock. I am not aware of the material being presented as

a whole. A 2-dimensional version of the theory is given in (Hyland and Power 2002).

It raises serious questions of coherence, but the order enriched version which I focus on

later in the paper is much easier.

Take a symmetric monoidal category L. I shall write × for the monoidal structure

with unit 1, as I only use the notions below in case the base category is cartesian closed.

I write t and t∗ as in (Hyland and Power 2002) for versions of the strength of a strong

monad T on L. A commutative monad T on L is a strong monad such that the diagram

TA × TB
t∗
- T (TA× B)

T (t)
- T 2(A × B)

T (A × TB)

t

?

T t∗
- T 2(A × B)

µA×B

- T (A × B)

µA×B

?

commutes. This commutative diagram expresses the property that the algebraic opera-

tions of T commute with each other. With T commutative we have a unique choice of

natural map TA×TB → T (A×B) and one sees readily that it together with the evident

map 1 → T 1 give T the structure of a monoidal monad. Conversely given a monoidal

monad one easily recovers a strength making the monad commutative.
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If T is a commutative monad on a symmetric monoidal closed category with equalizers,

then one can readily equip the category T -Alg with a (symmetric) closed structure in

the sense of Eilenberg and Kelly (Eilenberg and Kelly 1966). (In my view the natural

formulation is that T -Alg is a closed symmetric multicategory. The significance of this

notion is indicated in (Hyland and Power 2002) but not made fully explicit there.) I

briefly explain how to obtain the closed structure. For T -algebras A = (a : TA → A)

and B = (b : TB → B), the function space [A,B] is given by T -algebra structure on the

equalizer of maps [a, B] and [TA, b].TA,B from [A, B] to [TA, B]. It is easy then to check

that raising to the power of the algebra A preserves limits so that in good cases one gets

a corresponding symmetric monoidal structure. I need only the simplest case.

Proposition 1.2. If L is locally finitely presentable, and T is finitary commutative

monad then T -Alg is symmetric monoidal closed.

Proof. The category T -Alg is complete and one constructs the closed structure easily

from equalisers as above. But T -Alg is also cocomplete (see (Adámek and Rosický 1994)

for example) and so one can take coequalizers in T -Alg to get a good universal notion of

tensor product.

Remark One can readily extract from (Adámek and Rosický 1994) the fact that that

one has the same result for any accessible monad on a locally presentable category.

And one needs much less: L is finitely complete suffices for the closed structure, while

for the tensor product one needs finite colimits and some directed colimits which the

commutative monad T preserves. (I do not know sensible minimal conditions for the

tensor product.)

As I said above I shall use this theory in the case when the base category is cartesian

closed. Generally one has monoidal but not cartesian closed structure on the category

T -Alg of T -algebras, but the case when T -Alg is cartesian closed is also part of the

story. A commutative monad on a category with products is cartesian closed just when

T preserves products in the sense that the evident map T (A×B) → TA×TB is inverse

to the monoidal structure TA×TB → T (A×B), and the unique map T 1 → 1 is inverse

to the monoidal structure 1 → T 1. The following is very easy.

Proposition 1.3. If T is a cartesian closed monad on a cartesian closed category with

equalizers, then T -Alg is itself cartesian closed.

1.3. Categorical models of linear logic

I shall give a brief outline of the basic categorical perspective on models of Girard’s

Linear Logic (Girard 1987). Categorical models are models in the spirit of categorical

proof theory. (See (Hyland 2002) for other aspects of the subject.) Early treatments of the

notion of categorical model stressing computational aspects are in (Benton et al 1993a)

and (Benton et al 1993b). Categorical models are studied further in (Hyland and Schalk

2003), and I use the perspective of that paper here.
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Definition 1.4. A (categorical) model of intuitionistic linear logic consists of a category

L which (i) is equipped with symmetric monoidal closed structure, (ii) has finite products

and (iii) is equipped with a linear exponential comonad (!, ε, δ).

I adopt the usual linear logic notation, writing ⊗ for the tensor of the monoidal structure

and ⊸ for the linear function space. Details of the notion of linear exponential comonad

can be found in (Hyland and Schalk 2003). The main point of the definition comes from

the fact that the Kleisli category Kl(!) for the comonad ! is cartesian closed. It is worth

recalling the proof.

Proposition 1.5. Let L be a model of intuitionistic linear logic. Then the Kleisli cate-

gory C = Kl(!) is cartesian closed.

Proof. It is clear that products in L give products in C. The existence of an adjoint to

product follows from the following.

C(X × Y, Z) = L(!(X × Y ), Z)

∼= L(!X⊗!Y, Z)

∼= L(!X, !Y ⊸ Z)

= C(X, !Y ⊸ Z)

Thus to get a function space A ⇒ B in C it suffices to take (A ⇒ B) = (!A ⊸ B).

The equation (A ⇒ B) = (!A ⊸ B), often called the Girard translation from its first

appearance in (Girard 1987), analyses intuitionistic implication into a combination of a

resource modality ! and a linear (resource sensitive) implication. This view is the root of

Linear Logic.

1.4. Linear Logic and Domain Theory

In view of the enormous impact of Linear Logic in the last twenty years, I want to warn

against any too facile use of it in the context of Domain Theory, and with that aim I

make the following observations.

Observation 1. Any cartesian closed category C can be obtained from a model of classical

Linear Logic, by means of the Girard translation.

For there is a well known ∗-autonomous structure on L = C × Cop, see (Hyland and

Schalk 2003). On L there is a simple comonad ! taking (U, X) to (U, 1). (This comonad

lies behind modified realizability.) Then since L((U, 1), (V.Y )) ∼= C(U, V ) one sees at once

that Kl(!) is equivalent to C.

Observation 2 Let Dom be the category of Scott domains and Scott continuous maps

and SDom the category of Scott domains and strict maps. Then SDom is a symmetric

monoidal closed category and equipped with a lift comonad gives a model of Intuitionistic

Linear Logic. The Kleisli category is isomorphic to Dom.

For lifting gives a commutative monoid on the category Dom of Scott domains and

all objects are uniquely algebras for the monad. (Categorically, the uniqueness comes

from the fact that the lifting monad is lax idempotent.) Now SDom is the category
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of algebras for the monad and so it is symmetric monoidal closed by Section 1.2. The

standard adjunction produces a comonad on SDom and the identification of the Kleisli

category is immediate.

Observation 3 Let Dom be the category of Scott domains and Scott continuous maps

and LDom the category of Scott domains and linear maps (that is maps preserving all

sups). Then there is a comonad on LDom with Dom as Kleisli category. But LDom is

not a model of Linear Logic.

A Scott domain A has a subposet A0 of compact elements; and A is the directed com-

pletion D(A0) of A0. Let S(A0) be the free completion of A0 by finite bounded sups. We

see that linear maps D(S(A0)) → B correspond to Scott continuous maps A → B. So

we appear to have a case of the Girard translation. However there is a real problem with

the linear function space. For an algebraic lattice A, the space A ⊸ 2 of sup-preserving

maps will be Aop. But that need not be a domain. So function spaces do not exist in

general, and the Girard translation cannot be used. (For completeness I give a concrete

example where Aop is not a domain. Take A to be the lattice of open sets of 2N, that is

of Cantor space. The compact open sets form a basis for the topology so A is algebraic.

But in Aop, the lattice of closed sets, the points are minimal elements above ⊥; and they

are evidently not compact elements of that lattice.)

There are moral lessons in these observations. The first suggests that one should look

critically at any attempt to derive any particular cartesian closed category from a model

of Linear Logic. The attempt looks peculiarly idiotic in the case of the cartesian closed

category Set of sets and functions. The second shows that the mere fact that a cartesian

closed category arises from a useful model of Linear Logic does not in itself provide

understanding of that category. For with lifting the model of Linear Logic seems to

be derived from the category of domains. The third observation is tantalising. In the

absence of the Girard translation there is no particular advantage to an approach to Scott

continuous maps via linear maps. Rather the existence of LDom and of the comonad on

it are facts which themselves need explaining.

2. The Relational Model

I start by reviewing some ideas which I first presented at the Workshop on Domain Theory

for Dana Scott’s 70th Birthday in Copenhagen, July 2002. In the early 1970s it seemed

as if Domain Theory had been invented primarily in order to enable one to construct

genuinely mathematical models of the pure lambda calculus. But knowing what we do

now, Domain Theory is not at all the most natural and obvious place to find such models.

Rather the easiest construction takes place using the Relational Model, the fundamental

degenerate model for Linear Logic. I give a brief account here.

2.1. The Model of Linear Logic

To understand the categorical generalizations it is good to place the Relational Model in

a mathematical context.
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Multiplicative and additive structure The category Rel of sets and relations is the Kleisli

category of the power set monad P on the category Set of sets and functions. One can

identify P -algebras as
∨

-complete lattices. P is a manifestly commutative and so (as

mentioned above) a monoidal monad.

In view of Kock (Kock 1971a) and the Remark in Section 1.2, one hopes that the

category P -Alg of P -algebras has a monoidal structure (which it does) and that it

restricts to give a monoidal structure given by product on the Kleisli category Rel. With

this structure Rel is compact closed so ∗-autonomous in a degenerate fashion. Also Rel

has finite biproducts given by coproduct of sets. (This is inevitable. Set and so the

Kleisli category Rel have products and by an observation of Robin Houston (Housten

2008) products in compact closed categories are automatically biproducts.)

Exponential structure There is a simple way to equip Rel with a linear exponential

comonad. One takes the multiset monad M on Set whose algebras are commutative

monoids, extends it to a monad on Rel and then uses the (degenerate) duality on Rel

to obtain a comonad. A brief explanation of the extension is in order. Observe again

that P is a commutative monad. Any commutative monad lifts easily to the category

of commutative monoids, that is to M -Alg. (There is an important reason behind this:

the notion of commutative monoid is what we would now usually call operadic as it

is the monad generated by a symmetric operad.) It follows from the basic facts about

distributive laws, that we get an extension of M to a monad which we still call M on

Rel = Kl(P ). (This observation is old. It is a throw away remark in (Eilenberg and

Wright 1967), where operadic theories are reasonably enough called linear.) Finally to

get the comonad M∗ (here it does seem worth avoiding confusion) we dualize using the

opposite in the sense of relations: if r : A −→ B then r∗ : B −→ A. On objects and maps

M∗ = M , and the comonad structure in Rel is the opposite of the monad structure.

2.2. The Kleisli category

From a model of linear logic we get a cartesian closed category by taking the Kleisli

category of the linear exponential comonad. So we have a category Kl(M∗). The maps

r : A −→• B in it are relations r : M(A) −→ B. One way to think of such a relation is

that if xrb then the tokens in the multiset x trigger the token b. Here I use a language

suggestive of the idea of a Petri net. Since composition of maps reflects this natural

intuition, I like to think of this further Kleisli category as the category of Petri relations

and shall write PRel = Kl(M∗). I give a brief account of properties of PRel the category

of Petri relations.

Cartesian closure and points

Proposition 2.1. The category PRel is cartesian closed: the terminal object is 0, the

product of A and B is A + B, and the space B ⇒ C of functions is M(B) × C.

Proof. Cartesian closure is a direct consequence of the Girard translation 1.5.
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Since M(0) ∼= 1 in Set, the collection PRel(0, A) of points of A can be identified with

the power set P (A). It is easy to check that if r : MA −→ B is a map A −→• B in Prel

then r∗ = PRel(0, r) : P (A) → P (B) acts on x ∈ P (A) as follows.

r∗(x) = {b ∈ B | ∃a ∈ Mx.arb }

It is immediate that r∗ preserves directed sups, that is, it is Scott continuous. All Scott

continuous maps occur. If f : P (A) → P (B) is Scott continuous then there is a unique

maximal but many minimal relations r : MA −→ B such that r∗ = f

Proposition 2.2. The category PRel does not have enough points.

Proof. Observe that PRel(0, 1) ∼= P (1) ∼= 2. For finite posets, order-preserving maps

are automatically Scott continuous, and there are just three order-preserving maps 2 → 2.

On the other hand M(1) ∼= N in Set. Thus PRel(1, 1) ∼= Rel(N, 1) ∼= P (N) is infinite.

The fact that a category does not have enough points causes unnecessary anxiety to

many experts in lambda calculus. I shall try to dispel these concerns in a companion

paper.

Fixed points I give a crude hands on account of fixed points of maps. We are given a

parametrised map A + C −→• A in PRel and seek a parametrized fixed point C −→• A.

That is given M(A) × M(C) −→ A we seek a suitable M(C) −→ A. This will be

determined elementwise over M(C) and so it suffices to take f : M(A) −→ A and find a

fixed point x : 1 −→ A. But PRel(0, f) : PRel(0, A) → PRel(0, A) is a Scott continuous

map P (A) → P (A) on the power set of A and it suffices to take the least fixed point.

The standard good properties of this fixed point are immediate.

Proposition 2.3. The category PRel has parametrized fixed points.

For programming language semantics an even more significant feature of Domain The-

ory is the possibility of finding fixed points for a wide range of operators on domains

themselves. For Scott’s 70th birthday I illustrated this for the Relational Model by de-

scribing how to find models of the lambda calculus in Kl(M̂). The function space A ⇒ B

is given by M(A) × B. So the task is to find a set D with a retraction to M(D) × D

in Kl(M̂). Now any injective map C → D in Set induces an evident retraction from

D to C in Rel and hence a fortiori in Kl(M̂). But the problem in Set is trivial: for

any countable set D, the set M(D)×D is countable so one easily obtains models of the

lambda calculus, indeed models of the βη calculus if one takes a bijection. Of course this

crude approach gives no control over the equalities between lambda terms in the model,

but one can remedy that. For example one has the obvious analogue of Engeler models

(Engeler 1981). Old tools from (Hyland 1976) can be readily adapted to analyze the

equality in the naturally occuring examples. I hope to explain that in a further paper.

Conclusions It is clear that the Relational Model Rel and its induced cartesian closed

closed category PRel have very rich structure. In particular PRel has all the structure

which one usually requires for basic domain theoretic programming semantics. One should
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not flinch at its failing to have enough points. (Indeed Game Semantics makes a virtue

of this aspect of its modelling of programme languages.) However, notwithstanding the

fact that the action of maps in PRel on points is Scott continuous, what one has in

the Relational Model is not a form of Domain Theory. Perhaps more significantly it

does not look at all like a substitute for Domain Theory: the simple explanation of an

information ordering in Domain Theory is lacking. It may be hard to pin down what all

that amounts to, but it seems that there must be more to Domain Theory than simply

providing cartesian closed categories with good fixed point properties.

3. Kleisli Bicategories

In this section I sketch material from (Fiore et al) sufficient to provide a background

to recent generalizations of Domain Theory, and in particular to Winskel’s approach

(Cattani and Winskel 2005) to concurrency. One angle on this material is that it is

a generalization to the 2-dimensional level of the analysis just given of the Relational

Model.

3.1. Profunctors

The paper (Fiore et al) introduces the notion of a Kleisli structure. This is essentially

a slight generalization of the 2-dimensional notion of pseudo-monad, which is sensitive

to issues of size. The most familiar example of a Kleisli structure is the presheaf Kleisli

structure arising from the presheaf construction. The data for this Kleisli structure is as

follows.

— One takes Cat →֒ CAT, the inclusion of the 2-category of small categories into that

of locally small categories. To a small category A, assign P(A) =def [Aop ,Set], the

locally small category of presheaves over A; and for each A take the usual Yoneda

embedding yA : A → P(A).
— For each functor f : A → P(B), take f ♯ : P(A) → P(B) to be its left Kan extension

along the Yoneda embedding (Mac Lane 1971). This data is structured by families of

invertible 2-cells

ηf : f → f ♯ yA κA : (yA)♯ → 1TA κg,f : (g♯ f)♯ → g♯ f ♯

which I do not make explicit here. The 2-cells satisfy natural unit and pentagon

coherence conditions as explained in (Fiore et al).

The existence of this Kleisli structure follows from the classic identification of the presheaf

category P(A) as the free closure of A under small colimits (Im and Kelly 1986). This

also is explained in (Fiore et al).

The notion of Kleisli structure is a variant of the notion of monad for which the

Kleisli construction of a bicategory of free algebras makes immediate sense. The Kleisli

bicategory Kl(P) obtained from the presheaf Kleisli structure P can be identified with

the standard bicategory Prof of profunctors. The 0-cells are the small categories. For

small categories A and B the Kleisli construction gives

Kl(P)[A, B] = CAT[A,P(B)]
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and since P(B) =def [Bop ,Set], this is isomorphic by exponential transpose to

Prof [A, B] = CAT[Bop × A,Set] .

A profunctor from A to B is with these conventions a functor f : Bop ×A → Set, which

I write f(b, a). There is an evident analogy with the relational model where elements

of Rel(A, B) can be identified with maps f : B × A → 2. And one should think of

Prof [A, B] as the category of set-valued relations between the categories A and B.

The identity profunctor from A to A is the hom-functor A(−,−) : Aop × A → Set,

the exponential transpose of the Yoneda embedding yA. Composition of profunctors is

given by a coend formula: for profunctors f : Bop × A → Set and g : Cop × B → Set,

the composite profunctor g · f : Cop × A → Set is given by the formula

(g · f)(c, a) =

∫ b

g(c, b) × f(b, a) .

This identifies Prof with Kl(P) the Kleisli bictategory of the presheaf Kleisli structure,

and in particular gives a full proof of the basic fact.

Theorem 3.1. Prof carries the structure of a bicategory.

It is a claim of (Fiore et al) that the approach via Kleisli structures is a good way to

establish the existence of this leading example of a bicategory.

3.2. Distributivity

The paper (Fiore et al) provides a theory of liftings and extensions in the bicategorical

context which is a kind of categorification of that explained in Section 1.1. The general-

izations of Domain Theory exploited by Winskel stem from special cases of this general

theory, and I give a brief overview of them.

3.2.1. Filtered and finite colimits In a suitable sense P(A) is the closure of the small

category A under small colimits. Another classic construction is the closure of a small

category under filtered colimits, often called the Ind-completion. Again this gives a Kleisli

structure on Cat →֒ CAT. To a small category A, now assign D(A), which one can take

to be the full subcategory of P(A) on filtered colimits of representables. The Yoneda

embedding factors through the inclusion of D(A) in P(A) to give a Yoneda embedding

yA : A → D(A). Also D(B) is Ind-complete, in the sense that it is closed under filtered

colimits. Hence for f : A → D(B), one can take f ♯ : D(A) → D(B) to be a standard choice

of left Kan extension of f along the Yoneda embedding. Again there is 2-dimensional

structure to explain, but that restricts from the structure in the preseaf Kleisli structure

in a straightforward fashion. The result is the Ind-completion Kleisli structure.

Alongside the Ind-completion Kleisli structure it is natural to consider also the 2-

monad C for categories with finite colimits. (As a 2-monad on CAT it restricts to a

2-monad on Cat.) One can freely add all colimits to a small category by adding first

finite colimits and then filtered colimits. So it is natural to suppose that the presheaf
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Kleisli structure P is the composite DC. So one hopes that the Kleisli structure D lifts

to C-Alg or equivalently that the 2-monad C extends to the Kleisli category Kl(D).

Arguments establishing the hoped for distributivity are already in the original treat-

ment (Grothendieck, Artin, Verdier 1972). An accessible account is in (Johnstone 1982),

and I give a quick sketch. First, if A is a category with finite colimits, then D(A) has

finite colimits (and so is cocomplete), and moreover the Yoneda functor A → D(A) pre-

serves finite colimits. Further if f : A → X is a colimit preserving functor to a cocomplete

category X then the left Kan extension f ♯ : D(A) → X also preserves them. This shows

that D lifts to C-Alg, and so inter alia gives us a composite Kleisli structure DC. The

identification of that with the presheaf structure P is straightforward.

There is another aspect of the Ind-completion which is important for Domain Theory.

Filtered colimits are exactly the small colimits which commute with all finite limits in the

category Set of sets. Again this classic result goes back to the preliminary generalities in

SGA 4 (Grothendieck, Artin, Verdier 1972). It is treated fully in Mac Lane (Mac Lane

1971). It follows from this characterization that in case a category A has finite colimits,

the Ind-completion D(A) can be identified as the full subcategory Lex(Aop,Set) of the

presheaf category P(A) consisting of the finite limit preserving functors.

3.2.2. Symmetric monoidal categories The presheaf Kleisli structure is a 2-dimensional

analogue of the power set monad on Set, and the corresponding Kleisli bicategory Prof

is an analogue of the Kleisli category Rel. There are many monads which extend from

Cat to Prof , but the closest analogue to the multiset monad which we extended from

Set to Rel is the 2-monad Σ for symmetric (strict) monoidal categories. The multiset

monad is the monad for commutative monoids, and symmetric monoidal categories are

weak commutative monoids in the 2-category of categories. (As an aside, I mention that

this is more than a simple categorification. The set of finite multisets on a set A can be

obtained by taking the free symmetric monoidal category on A as a discrete category,

and then taking its set of connected components. This is the basis for an illuminating

approach to finitary polynomial functors.) The extension of the 2-monad Σ for symmetric

monoidal categories to Prof follows from the lifting of the Kleisli structure P to Σ-Alg.

The fundamental technical fact is the lifting to monoidal categories using the Day tensor

product. This is the essential content of the paper (Im and Kelly 1986). (Of course the

case of symmetric monoidal categories follows easily as symmetry is inherited by the Day

tensor product.)

The extension of Σ to Prof is a pseudo-monad, and just as in the case of M on Rel

one can dualise now to get a pseudo-comonad Σ⋆ on Prof . As explained in (Fiore et al

2008), the Kleisli bicategory Esp (for ‘espèces de structures’) of this pseudo-comonad

is the bicategory in which Joyal’s theory of species has a natural home: the category

of general species, without finiteness restriction, is Esp(1, 1) where 1 is the terminal

category.

Cartesian closure and points PRel is cartesian closed by a direct application of the

Girard translation of Linear Logic. To handle the bicategorical situation one needs a
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2-dimensional version of that, but the general theory is not exciting and the result can

be extracted easily enough. The following fact is explained in detail in (Fiore et al 2008).

Proposition 3.2. The bicategory Esp is cartesian closed.

The question of points in the bicategory Esp is curious, and the difficulty does not

parallel that in PRel.

Proposition 3.3. The bicategory Esp does not generally have enough points. However

if one restricts the objects from small categories to groupoids one does have enough

points.

Proof. A single non-invertible arrow creates a problem for points. But if one deals only

with groupoids, the maps are the determined by analytic functors in the obvious sense

extending the notion in (Joyal 1981).

Fixed points The situation is very similar to that for PRel, with easy 2-dimensional

modifications. It has been considered by Ryu Hasegawa (Hasegawa 2002).

Proposition 3.4. The bicategory Esp has parametrized fixed points (in the obvious

up-to-isomorphism sense).

Hasegawa (Hasegawa 2002) makes a connection between these fixed points and the bi-

categorical trace on Prof arising from the compact closed structure, but his analysis of

the Lagrange-Good inversion formula is not well understood.

In addition one can solve a wide range of domain equations within Esp. For straight-

forward (functorial) domain equations this is also considered in (Hasegawa 2002). But

one can do more and as was the case for PRel the situation is very similar to that for

Domain Theory.

3.2.3. Categories with finite limits Finally in this section I describe the example which

when specialised from categories to posets provides the approach to Domain Theory of

the next section.

Let L be the 2-monad on CAT restricting to Cat for categories with finite limits. The

Kleisli structure P lifts to the 2-category L-Alg of L-algebras by reason of the following

observations.

— Any presheaf category P(A) has finite limits, and if A has finite limits then the

Yoneda yA : A → P(A) preserves finite limits.

— If A and B have finite limits and the functor f : A → P(B) preserves finite limits,

then the left Kan extension f ♯ : P(A) → P(B) preserves finite limits.

This immediately gives a lift of the presheaf Kleisli structure P to L-Alg and hence an

extension of L to a pseudo-monad on Prof .

Again one can dualise to get a pseudo-comonad L∗ on Prof . It does not seem worth

naming the resulting Kleisli bicategory Kl(L∗), though an order-enriched version of it

plays a big role in the next section.
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Cartesian closure and points As before, using a 2-dimensional version of the Girard

translation, one readily gets cartesian closure.

Proposition 3.5. The bicategory Kl(L∗) is cartesian closed.

The question of points in the bicategory Kl(L∗) is relatively straighforward. A profunctor

L∗(A) −→ B corresponds to a functor L∗(A) → P(B). But L∗(A) is the closure of A

under finite colimits. So by Section 3.2.1, such a functor corresponds to a filtered colimit

preserving functor P(A) → P(B). That gives the action on points of a map in Kl(L∗),

and the following is then obvious

Proposition 3.6. The bicategory Kl(L∗) does have enough points.

Fixed points For fixed points the situation is very similar to that for PRel and Esp.

Proposition 3.7. The bicategory Kl(L∗) has parametrized fixed points (in the obvious

up-to-isomorphism sense).

Again one can also solve a wide range of domain equations within Kl(L∗) and the situ-

ation is similar to that for Domain Theory.

4. Ordered sets

The background to the generalized domain theory sketched in the previous section re-

quires some non-trivial higher dimensional category theory, and will not be to the taste of

all readers. However restricting back from categories to posets gives a version which can

be understood at the level of ordinary categories. In this section I present this version.

For this paper one can think of what results as using experience of a generalization to

provide a fresh approach to traditional Domain Theory. This in its turn should inform

developments in the higher dimensional setting, but that is for another time.

4.1. Posets and Linear Systems

We start with the category Pos of posets and order preserving maps. For X a poset, let

P (X) = [Xop, 2] be the poset of down-closed subsets of X ordered by inclusion. We have

a Yoneda embedding y : X → P (X) in Pos given by

y(a) = ↓(a) = {b | b ≤ a} .

P (X) is the free
∨

-complete poset generated by the poset X in the obvious sense that

any functor f : X → C where C is
∨

-complete factors uniquely through the Yoneda as

X
yX

- P (X)
f ♯

- C

where the left Kan extension f ♯ is defined for r ∈ P (X) by

f ♯(r) =
∨

{f(a)|a ∈ r} .
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It follows that P has the structure of a monad on Pos with unit the Yoneda embedding

y : X → P (X), and multiplication P (P (X)) → P (X) given by union. This corresponds

to the presheaf Kleisli structure of the previous section.

Now consider what corresponds to the bicategory of profunctors. It will be the Kleisli

category of P . I adopt Glynn Winskel’s nomenclature as for example in (Winskel and

Zappa Nardelli 2004) and call this category Lin the category of linear systems. A map

from X to Y in Lin is a functor X → P (Y ) in Pos and so can represented via the

transpose X × Y op → 2 as a relation r : X −→ Y such that

a′ ≥ a and a r b and b ≥ b′ implies a′ r b′ .

Here for clarity I write r as an infix relation.

4.2. Directed and finite sups

Consider the analogue of the decomposition of the presheaf Kleisli structure. Let D be

the monad for directed completion and S the monad for ∨-semilattices (that is for finite

sup completion). The following observations are all easy. First if A is a ∨-semilattice then

so is D(A) (so in fact D(A) is
∨

-complete). Secondly the Yoneda embedding A → D(A)

preserves finite sups. Finally if f : A → L is a finite sup preserving map from a ∨-

semilattice A to a suplattice L, then the left Kan extension D(A) → L also preserves

finite sups.

It follows that the monad D on Pos lifts to one on S-Alg the category of ∨-semilattices

and so S extends from Pos to the Kleisli category Kl(D). There is a distributive law

SD → DS and DS is a monad which one can readily identify with the monad P from

the previous section.

4.3. Extending a monad

I turn now to the question of when one can extend a monad on Pos to one on Lin. With

the simplest form of domain theory in view I concentrate on the monad M for meet

semi-lattices. As a functor M is given by the collection of finitely generated up-closed

subsets, ordered by ⊇, that is by the opposite of inclusion. A routine simplification of the

arguments of (Fiore et al) shows that this monad extends. For the benefit of those ill at

ease with the relevant category theory, it seems worth going through what that amounts

to in this easy special case.

By the general theory of distributive laws to give an extension of M to the Kleisli

category Lin is to give a lifting of the monad P to the category M -Alg of M -algebras

or meet semilattices. I follow the line of analysis of (Fiore et al) and then explain why it

follows that one does indeed get the required lifting. The analysis involves the following

points.

1 If X is a ∧-semilattice then so is P (X). This is evident: as P (X) is
∨

-complete it

is
∧

-complete and so ∧-complete. Moreover if X is a ∧-semilattice then the Yoneda

y : X → P (X) preserves the ∧-semilattice structure. This is a straighforward check

y(T ) =↓ (T ) = X = T the top element in PX
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y(a ∧ b) =↓ (a ∧ b) =↓ (a)∩ ↓ (b) = y(a) ∩ y(b) in PX

2 For X and Y ∧-semilattices and f : X → P (Y ) a map of ∧-semilattices, the left

Kan extension f ♯ : P (X) → P (Y ) is also a map of ∧-semilattices. Recall that for

r ∈ P (X) one has f ♯(r) =
⋃

{f(a)|a ∈ r}. To see that f ♯ preserves ⊤ observe that

f ♯(⊤) = f ♯(X) =
⋃

{f(a)|a ∈ X} = f(⊤) = ⊤

To see that f ♯ preserves ∩ observe that

f ♯(r) ∩ f ♯(s) =
⋃

{f(a)|a ∈ r} ∩
⋃

{f(b)|b ∈ s}

=
⋃

{f(a) ∩ f(b)|a ∈ r, b ∈ s}

=
∨

{f(a ∩ b)|a ∈ r, b ∈ s}

=
∨

{f(c)|c ∈ r ∩ s}

= f ♯(r ∩ s) .

These points are enough to provide a lift of P to a monad P̃ say on M -Alg. The action

of P̃ on objects is given by point 1 above: we take A to P (A). We get the action on maps

f : A → B as the left Kan extension (yB.f)♯, which is an M-algebra map by point 2.

The unit y : A → P (A) is an M-algebra map by point 1, and the naturality of that is

immediate. The multiplication of the monad is given as the left Kan extension (1PA)♯ of

the identity, and again that is an M -algebra map by point 2.

4.4. From monad to comonad

In the previous section I explained why the monad M for ∧-semilattices extends from

Pos to Lin. Now Lin is compact closed: the tensor product is given by product of posets

and the dual of a poset A is Aop, the opposite poset with the order reversed. Hence we

can dualise the monad M on Lin to give a comonad S = M∗ which is defined as a functor

by

S(A) = M∗(A) = (M(Aop))op .

On objects S(A) is the free ∨-semilattice on A.

Each M(A) is a commutative monoid in Pos and so in Lin. Also maps M(A) → M(B)

of free M -algebras in Pos preserve the monoid structure, and (there is something to check

here) this extends to Lin. It follows that S(A) is a commutative comonoid in Lin and that

maps S(A) → S(B) of free S-algebras in Lin preserve the comonoid structure. Finally

one can show that S is a monoidal comonoid in Lin. Thus S is a linear exponential

comonad and Lin is a model for Linear Logic.

4.5. The Kleisli category for the comonad

One can identify the Kleisli category Kl(S) for the comonad S as a category of domains

as follows. By definition the objects are posets and the maps A −→• B are maps of linear

systems SA −→ B, that is maps of posets SA → PB. Now consider that PB ∼= DSB,
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so one has maps of posets SA → DSB and so directed sup preserving (that is Scott

continuous) maps DSA → DSB or equivalently PA → PB.

The whole discussion of this section is based on the category Pos: everything is at

least enriched there. In this context it seems appropriate to say that an algebraic lattice

is free just if it is of the form PA for a poset A, that is when it is a free
∨

-lattice on a

poset. Equivalently an algebraic lattice is free just if it is the result of taking a poset A,

forming the free ∨-semilattice SA, and then taking the directed completion DSA. Thus

one can identify Kl(S) with the category FAlglatt of free algebraic lattices.

Since one has a model for Linear Logic, the discussion in section 1 applies, and one

derives the following.

Proposition 4.1. The Kleisli category Kl(S), equivalently the category FAlglatt of

free algebraic lattices and Scott continuous maps, is cartesian closed.

This is all one gets by simple application of ideas coming from Linear Logic. To get a

handle on Domain Theory one needs to go further and explain the cartesian closure of

the category Alglatt, of all algebraic lattices and Scott continuous maps.

4.6. Cpos

To explain domains one has to go beyond the category of free algebraic lattices. But it

is easy to go too far, and instructive to see why. Let Dcpo be the category of directed

complete partial orders and Scott continuous maps. Then Dcpo is clearly the category

D-Alg of algebras for the directed completion monad D. Now D is a commutative monad.

(This holds either concretely because directed limits commute with directed limits, or

else as D is lax idempotent and so commutative by an easy special case of section 6.7

of (Lopez Franco 2008).) But D is very special, indeed it is the main example in Kock

(Kock 1971b) of a cartesian closed monad, that is, one in which the evident map

D(A × B) → DA × DB

is inverse to the monoidal structure

DA × DB → D(A × B) .

So applying the main result of (Kock 1971b) we get the following.

Proposition 4.2. The category Dcpo, of directed complete partial orders and Scott

continuous maps, is cartesian closed.

This result is too easy. As a result it seems to me unhelpful to think of the cartesian

closure of Alglatt as a matter of finding some cartesian closed subcategory of Dcpo.

4.7. Algebraic Lattices

It is now time to understand the category Alglatt in terms of the theory developed

above. I first take another look at the category FAlglatt of free algebraic lattices. There

are the following equivalent perspectives.
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— The Kleisli category of the comonad S on Lin. The objects are posets A, B, C, say,

and the maps A → B are maps SA −→ B in Lin that is, maps SA → PB in Pos.

— The category of free D-algebras on the underlying posets of free ∨-semilattices.

Objects are free ∨-semilattices. SA, SB, SC, say, and maps SA → SB are maps

DSA → DSB in Dcpo that is poset maps SA → DSB.

Following the second view, the category Alglatt can be presented as follows. The objects

are (arbitrary) ∨-semilattices A = (SA → A), B = (SB → B), C = (SC → C), say, and

maps A to B are D-algebra maps from the free D-algebra on the underlying poset A to

that on B. I seek now to explain why Alglatt is cartesian closed.

Products in Alglatt are straightforward. The category S-Alg of ∨-semilattices is com-

plete, indeed the forgetful functor creates limits. So in particular there is a product A×B

given by the evident composite S(A × B) → SA × SB → A × B. Then one checks

Alglatt(C,A× B) ∼= D-Alg(DC, D(A × B))

∼= D-Alg(DC, DA × DB)

∼= D-Alg(DC, DA) × D-Alg(DC, DB)

∼= Alglatt(C,A) × Alglatt(C,B) .

Thus at the level of the generating ∨-semilattices products are given by products in

S-Alg.

The question of function spaces in the category of algebraic lattices is very much

more subtle. I start by explaining the issue. Suppose again that A = (a : SA → A),

B = (b : SB → B) and C = (c : SC → C) are ∨-semilattices. Then

Alglatt(A× B, C) ∼= D-Alg(D(A × B), DC)

∼= Pos(A × B, DC)

∼= Pos(A, B ⇒ DC)

To continue one clearly needs to show that B ⇒ DC is of the form D(E(B, C)) for some

∨-semilattice E(B, C). Now why is that? The first thing to note is that in case

C = FX = (µX : S2X → SX)

is a free ∨-semilattice FX on a poset X , then the matter is essentially no different from

the construction in the category of all such FAlglatt. For

(B ⇒ DSX) ∼= (B ⇒ PX) ∼= P (Bop × X) ∼= DS(Bop × X) .

So for C = FX ,

Alglatt(A× B, C) ∼= Pos(A, DS(Bop × X))

∼= D-Alg(DA, DS(Bop × X))

∼= Alglatt(A,B ⇒ C)

where B ⇒ C = F (Bop × X) is itself a free algebraic lattice. Note that the traditional

approach to function spaces via step functions hides the fact that the space of functions

into a free algebraic lattice is free. Though it is straightforward to confirm the observation
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by direct calculation, I do not recall it from the literature. So even at this point one has

maybe gained some mathematical understanding.

To treat the space of functions B ⇒ C for a general C requires more work. The argument

just given depends essentially on the fact that PX ∼= (Xop ⇒ 2) in Pos so that

(B ⇒ PX) ∼= (B ⇒ (Xop ⇒ 2)) ∼= ((B × Xop) ⇒ 2) ∼= P (Bop × X) .

So I need a substitute for that fact.

The substitute depends on the fact that the categories of ∧-semilattices and of ∨-

semilattices are symmetric monoidal closed. This is immediate by Proposition 1.2, but

is also very easy to prove directly. Now consider a special case of the characterization

of the Ind-completion. For C a ∨-semilattice the directed completion can be identified

with Cop
⊸ 2 the (complete) poset of ∧-semilattice maps from Cop to 2. (Here ⊸ is the

closed structure in ∧-semilattices.) There are isomorphisms

B ⇒ (Cop
⊸ 2) ∼= MB ⊸ (Cop

⊸ 2)

∼= MB ⊗ Cop
⊸ 2 .

Now (MB⊗Cop)op ∼= SBop ⊗C where context determines that on the left hand side the

tensor is in ∧-semilattices while on the right hand side it is on ∨-semilattices. Thus for

general algebraic lattices A, B, C there is a natural isomorphism

Alglatt(A× B, C) ∼= Alglatt(A,B ⇒ C)

where (B ⇒ C) = D(S(Bop) ⊗ C) is determined as an algebraic lattice by its finite

elements (S(Bop) ⊗ C).

This explanation of the cartesian closure of Alglatt may appear to give an explanation

of the function space B ⇒ C which is less concrete than the usual one in terms of finite

sups of step functions. But that is illusory. One has to work to get a concrete handle on

the formal relation between finite sups of step functions. And the description of the finite

elements of B ⇒ C as SBop ⊗ C readily gives a description by generators and relations,

in the sense of order enriched algebra. I explain this in the following remarks

Remark 1 If X is a poset then SX is isomorphic to the ∨-semilattice of finitely generated

downsets of X , that is, to the finitary elements of PX . A presentation can be given as

follows. For a and b arbitrary finite subest of X define a preorder a ≤ b by

a ≤ b if and only if ∀x ∈ a. ∃y ∈ b .x ≤ y

In terms of generators and relations, take elements x ∈ X and form terms in ⊥ and

∨ subject to the laws for a commutative idempotent monoid together with x ∨ y = y

whenever x ≤ y.

Remark 2 If A and B are ∨-semilattices then A ⊗ B is generated as a ∨-semilattice

from the product poset A × B with elements a ⊗ b subject to

(a ∨ a′) ⊗ b = a ⊗ b ∨ a′ ⊗ b ⊥⊗ b = ⊥

a ⊗ (b ∨ b′) = a ⊗ b ∨ a ⊗ b′ a ⊗ ⊥ = ⊥

as additional equations.
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Remark 3 If X is a poset and B a ∨-semilattice, then the presentation of S(X) ⊗ B

obtained by the previous remarks can be simplified. It is the generated as a ∨-semilattice

from the poset X × B with elements x ⊗ b subject to

x ⊗ (b ∨ b′) = x ⊗ b ∨ x ⊗ b′ x ⊗⊥ = ⊥

as additional equations.
Remark 4 If one applies Remark 3 to the case of S(Bop) ⊗ C one gets a presentation

based on the poset Bop × C whose elements I now write as [b, c] with

[b, (c ∨ c′)] = [b, c] ∨ [b, c′] [b,⊥] = ⊥

as additional equations. These are exactly the relations between the basic step functions

[b, c] =

{

c if a ≥ b,

⊥ otherwise,

which appear in the standard treatments.

5. Conclusion

In this paper I have concentrated on algebraic lattices, because the story for them is

straightforward and immediately appealing. It is possible to treat Scott domains in a

similar spirit, but I leave that for another occasion. What I am keen to stress here is a

simple story. The starting point, the relational model of Linear Logic, is very natural.

Generalizing from sets to categories gives a range of models based on the bicategory of

profunctors. Specializing one of these from categories to posets gives a model leading to

the cartesian closed category of free algebraic lattices. One uses absolutely basic abstract

mathematics to move from that to the cartesian closed category of algebraic lattices.

Some proponents of Stable Domain Theory and its many relations castigate the theory

of Scott domains as somehow trivial. I suppose that a number of thoughts lie behind that,

most obviously the following.

— Scott domains are a rather boring kind of topological space.
— The properties of Scott domains, including the cartesian closure of the category are

mathematically uninteresting.

— There is no useful connection between Scott domains and Linear Logic.

The abstract approach in this paper does I believe provide responses at various levels.

— Algebraic lattices are only accidentally spaces. They naturally arise by specializing

ideas from the theory of Ind-completion to the poset case.

— That the category of algebraic lattices is cartesian closed depends on some elegant

abstract mathematics.
— There is a connection with Linear Logic, but considerations beyond the standard

Girard construction are needed to account for the category and its properties.

The reconstruction of Domain Theory given in this paper is inspired by categorical

generalizations and the work of Winskel (Cattani and Winskel 2005) in particular. I

hope that readers will feel that it does support Kreisel’s idea that one justification for

generalization is that it leads to an increase in mathematical understanding.
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