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We introduce convex-concave duality for various models of non-deterministic choice,

probabilistic choice, and the two of them together. This complements the well-known

duality of stably compact spaces in a pleasing way: convex-concave duality swaps angelic

and demonic choice, and leaves probabilistic choice invariant.

1. Introduction

There is a well-known duality on stably compact spaces X called de Groot duality: the

de Groot dual Xd of X is X with its cocompact topology, and its own dual gives back

X . We show that this induces another duality, or rather another family of dualities, on

semantic models of choice, which swaps angels and demons, but leaves nature invariant.

What we mean by this is as follows. We show in Section 3 that the dual of the Smyth

powerdomain (for demonic non-determinism) of any stably compact space X is the Hoare

powerdomain (for angelic non-determinism) of the dual Xd of X , and conversely. It fol-

lows easily that both powerdomains are stably compact. Similarly, we show in Section 4

that the Plotkin powerdomain construction is self-dual: the dual of the Plotkin power-

domain (for erratic non-determinism) is the Plotkin powerdomain of the dual. We show

it again in Section 5, using a functional view of powerdomains. This was our original

approach. The functional view will be the one that prevails in the subsequent sections,

and Section 5 will therefore serve as a, hopefully gentle, introduction.

In Section 6 we turn to the probabilistic powerdomain (Jones, 1990), which encodes

probabilistic choice, and show that the probabilistic powerdomain construction is also

self-dual. In a poetic way, Papadimitriou used the term “nature” to denote random choice

(Papadimitriou, 1985), whence our claim that duality leaves nature invariant. One can

vindicate this term as follows. In natural sciences, e.g., physics, phenomena are not

thought as the result of a malevolent attacker (a demon) or of a benevolent angel, but

as the by-product of mechanisms governed purely by probability distributions.

† Work partially supported by the INRIA ARC ProNoBiS.
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We then turn to two models of our own that mix non-deterministic choice and proba-

bilistic choice: the game models, an elaboration of Choquet’s theory of capacities (Cho-

quet, 54) with domain-theoretic flavor, which we deal with in Section 6 as well, since

much can be factored with the purely probabilistic case; and the prevision models, in

Section 7, which can either be seen as a similar elaboration from Walley’s previsions

(Walley, 1991), or as a relaxation of the game models through integral representation

theorems. The prevision models are isomorphic to Tix, Keimel and Plotkin’s own mod-

els of convex powercones (Tix et al., 2005), see (Goubault-Larrecq, 2008a; Keimel and

Plotkin, 2009). In any case, we show similar duality theorems, which exchange demonic

and angelic non-determinism while keeping probabilistic choice (nature) invariant.

2. Preliminaries

We refer the reader to (Abramsky and Jung, 1994; Gierz et al., 2003; Mislove, 1998) for

background material on domain theory and topology, and recall some prerequisites in

topology first, then on de Groot duality, and finally on domain theory.

2.1. Topology

A topology on X is a family of subsets, called the opens , such that any union and any

finite intersection of opens is open. The complements of open subsets are called closed .

The largest open contained in a subset A of X is its interior int(A), while the smallest

closed set containing A is its closure cl(A). Given a subset A of X , the induced topology

on A has as opens the intersections A∩U , U open in X . A topology is finer than another

iff it has at least as many opens.

Given any family of subsets A of X , there is a smallest topology on X generated by

A, i.e., making all elements of A open. Then every open in this topology is a union of

finite intersections of elements of A; A is then a subbase of the topology. If every open is

a union of elements of A, then A is called a base of the topology. We shall call subbasic

opens the elements of a given subbase, and similarly for basic opens . By analogy, let the

subbasic closed sets be the complements of the subbasic opens.

A map f : X → Y is continuous iff f−1(U) is open in X for every open subset U of

Y . We shall often use the fact that, if A is a subbase of the topology of Y , f : X → Y is

continuous iff f−1(U) is open in X for all elements U of A.

We reserve the term homeomorphism for isomorphisms in the category of topological

spaces and continuous maps, i.e., one-to-one continuous maps whose inverse is also con-

tinuous. An embedding f : X → Y is a homeomorphism onto its image Im f , i.e., an

injective continuous map such that, for every open subset U of X , f(U) is open in Im f

— meaning that f(U) can be written as Im f ∩ V for some open subset V of Y .

The product
∏

i∈I Xi of topological spaces is defined as the set-theoretic product,

with the product topology, i.e., the smallest that makes all canonical projections πi :∏
i∈I Xi → Xi continuous. Alternatively, a base of this topology consists of products∏
i∈I Ui of opens Ui of Xi, i ∈ I, where only finitely many such opens Ui are different

from Xi.
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A subset Q of X is compact iff one can extract a finite subcover from every open cover

of Q. It is saturated iff it is the intersection of all opens containing it, a.k.a. it is upward-

closed in the specialization quasi-ordering ≤, defined by x ≤ y iff every open containing x

contains y. The saturation ↑A of a subset A of X is defined equivalently as the intersection

of all opens U containing A, or as the upward-closure {x ∈ X | ∃y ∈ A ·y ≤ x}. We write

↓A the downward-closure {x ∈ X | ∃y ∈ A ·x ≤ y}. Every open subset is upward-closed,

and every closed subset is downward-closed. In T0 spaces X that are not T1, such as

dcpos (see below), there are compact subsets that are not saturated, e.g., {x} where x

is not maximal in X . However, for any compact subset K, ↑K is both compact and

saturated.

A useful trick is Alexander’s Subbase Lemma (Kelley, 1955, Theorem 5.6), which states

that in a space X with subbase A, a subset K is compact if and only if one can extract

a finite subcover from every cover of K consisting of elements of A.

A topological space X is stably compact—taking the definitions of (Jung, 2004; Alvarez-

Manilla et al., 2004)—iff X is T0 (≤ is an ordering), well-filtered (for every filtered family

(Qi)i∈I of compact saturated subsets, for every open U , if
⋂

i∈I Qi ⊆ U then Qi ⊆ U

already for some i ∈ I), locally compact (whenever x ∈ U with U open, there is a compact

saturated subset Q such that x ∈ int(Q) ⊆ Q ⊆ U), coherent (the intersection of any

two compact saturated subsets is again so) and compact . Stable compactness has a long

history, going back to (Nachbin, 1948), see also (Jung, 2004; Alvarez-Manilla et al., 2004).

Be aware that several authors define “coherent” as synonymous with stably compact,

leaving coherence itself without a name. In defining coherence as above, we follow, e.g.,

Alvarez-Manilla (Alvarez-Manilla, 2000). Note also that, in any locally compact space,

whenever Q is a compact saturated subset of some open U , then there is a compact

saturated subset Q1 such that Q ⊆ int(Q1) ⊆ Q1 ⊆ U . In particular, every open is the

union of the interiors of its compact saturated subsets.

Stable compactness is also usually defined by requiring sobriety instead of well-fil-

teredness. As remarked by Jung (Jung, 2004, Section 2.3), referring to (Gierz et al.,

2003, Theorem II-1.21), this is equivalent in the presence of local compactness. We shall

only rarely need to refer to sobriety, however let us recall the definition. Say that a closed

subset F of X is irreducible if and only if F is non-empty, and whenever F is contained

in the union of two closed subsets F1 and F2, then F is contained in one of them already.

Note that ↓x is closed and irreducible for every element x of X . A space X is sober if

and only if it is T0, and the only irreducible closed sets are of the form ↓x, x ∈ X . The

fundamental theorem of sober spaces is the Hofmann-Mislove Theorem (Abramsky and

Jung, 1994, Theorem 7.2.9), which states that in a sober space X , the space of compact

saturated subsets of X ordered by reverse inclusion, and the space of Scott-open filters

of open subsets of X ordered by inclusion, are isomorphic. A filter F of opens of X is

a family of open subsets of X containing X itself, such that the intersection of any two

elements of F is again in F , and any open V containing U ∈ F is in F . F is Scott-open

iff for every family (Ui)i∈I of open subsets of X whose union is in F , some finite union⋃
i∈J Ui (J finite subset of I) is already in F ; i.e., iff F is open in the lattice O(X) of open

subsets of X with its Scott topology (see below). The easy direction consists in observing

that, for every compact saturated subset Q of X , the collection of all opens containing
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Q is a Scott-open filter of opens of X . Conversely, the intersection Q =
⋂

U∈F U of all

elements of a Scott-open filter F of opens is compact saturated, and the opens containing

Q are exactly the elements of F . It follows that, even without local compactness, sobriety

implies well-filteredness.

Finally, we define stably locally compact spaces X as those obeying all the properties of

stably compact spaces except, possibly, compactness. I.e., stably locally compact spaces

are T0, well-filtered, locally compact coherent spaces. Every stably locally compact space

X can be embedded into a stably compact space X⊥: X⊥ is X plus a fresh element ⊥,

and the opens of X⊥ are those of X plus X⊥ itself. Note that ⊥ is then the least element

of X⊥ in its specialization ordering.

A typical example of a stably compact space is the set [0, 1] with opens of the form

(t, 1], 0 ≤ t ≤ 1, plus [0, 1] itself. This is just [0, 1] with the Scott topology of its natural

ordering ≤, see below. We shall write [0, 1]σ for [0, 1] with its Scott topology, reserving

[0, 1] for (the set) [0, 1] with its usual, metric topology. Similarly, we write R+
σ for R+

with its Scott topology, whose non-trivial opens are the open intervals (t, +∞), t ∈ R+.

A space is Hausdorff , or T2, iff every two distinct points x, y can be separated by opens

U, V , i.e., x ∈ U , y ∈ V , and U ∩V = ∅. Every compact T2 space is stably compact, e.g.,

[0, 1]; the converse fails, as for example [0, 1]σ is stably compact but not T2.

2.2. De Groot Duality

De Groot duality is the duality that the title of this paper refers to. My preferred reference

to this theory is Jung’s paper (Jung, 2004), and its journal version (Alvarez-Manilla et al.,

2004). The study of compact pospaces originates in Nachbin’s classic book (Nachbin,

1965). See also (Gierz et al., 2003, Section VI-6).

A compact pospace is a pair (X ′,�) where X ′ is a compact space and � is an ordering

on X ′ whose graph is closed in X ′ ×X ′. It follows that X ′ is compact T2. The collection

of opens of X ′ that are upward-closed in � forms a topology, the upper topology, which

makes X ′ a stably compact space. Similarly, the lower topology consists in the downward-

closed opens of X ′.

For example, the upper topology of ([0, 1],≤) is [0, 1]σ, and its lower topology is given

by subsets of the form [0, t), 0 ≤ t ≤ 1, plus [0, 1] itself.

Nicely enough, one can go back, and retrieve a compact pospace from any stably

compact space X . The first step consists in building the cocompact topology of X , which

is the one generated by the cocompact subsets of X—the cocompact subsets are the

complements X \Q of compact saturated subsets Q. The space Xd whose underlying set

is that of X , and whose topology is the cocompact topology of X , is the de Groot dual

of X . When X is stably compact, the opens of Xd are exactly the cocompacts of X .

Note that this means that the closed subsets of Xd are the compact saturated subsets of

X , and in particular that finite unions and arbitrary intersections of compact saturated

subsets of X are again compact saturated.

Then, Xdd = X ; we take = to denote equality of spaces, meaning that the two spaces

have the same elements, and the same topologies as well. Also, the specialization ordering

of Xd is ≥, the converse of the specialization ordering ≤ of X .
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For example, when X = [0, 1]σ, the compact saturated subsets of X are the closed

subintervals [t, 1], 0 ≤ t ≤ 1, so the opens Xd are the subsets of the form [0, t), 0 ≤ t ≤ 1,

plus [0, 1] itself—i.e., those of the lower topology of [0, 1].

The patch topology on X is generated by the union of the original topology of X and

of its cocompact topology. Write Xpatch for X with its patch topology. When X is stably

compact, with specialization ordering ≤, (Xpatch,≤) is a compact pospace, which we shall

call the Nachbin pospace of X . Its upper topology is the topology of X , and its lower

topology is the cocompact topology of X . Conversely, if (X ′,�) is a compact pospace,

then (X ′,�) is the Nachbin pospace of the space X ′ with its upper topology. E.g., the

patch topology of [0, 1]σ is the usual metric topology on [0, 1].

This machinery allows one to show easily that every patch-closed subset of a sta-

bly compact space X is stably compact in its induced topology (Jung, 2004, Proposi-

tion 2.16). A subset is patch-closed iff it is closed in the patch topology. This generalizes

the fact that every closed subset of a compact T2 space is compact T2, to non-T2 topolo-

gies.

Moreover, these constructions behave well with respect to products. For every family

(Xi)i∈I of stably compact spaces, where ≤i is the specialization ordering of Xi, i ∈ I,

then X ′ =
∏

i∈I Xpatch
i with the componentwise ordering ≤ is a compact pospace, and is

in fact the Nachbin pospace of
∏

i∈I Xi. In other words, the patch topology of a product

of stably compact spaces is the product of the patch topologies, and the specialization

ordering of the product is the componentwise ordering (Jung, 2004, Proposition 2.15).

For example, the space [0, 1]Iσ of all maps from I to [0, 1]σ, seen as the product of

I copies of [0, 1]σ, can also be seen as the product of I copies of [0, 1], with the upper

topology of the componentwise ordering. We call such spaces [0, 1]Iσ cubes .

2.3. Domain Theory

A set with a partial ordering is a poset . A dcpo is a poset in which every directed family

(xi)i∈I has a least upper bound (a.k.a., sup) supi∈I xi. A family (xi)i∈I is directed iff it

is non-empty, and any two elements have an upper bound in the family. Any poset can

be equipped with the Scott topology, whose opens are the upward closed sets U such that

whenever (xi)i∈I is a directed family that has a least upper bound in U , then some xi

is in U already. The Scott topology is always T0, and its specialization ordering is the

original partial ordering.

The way-below relation ≪ on a poset X is defined by x ≪ y iff, for every directed

family (zi)i∈I that has a least upper bound z such that y ≤ z, then x ≤ zi for some i ∈ I

already. Note that x ≪ y implies x ≤ y, and that x′ ≤ x ≪ y ≤ y′ implies x′ ≪ y′.

However, ≪ is not reflexive or irreflexive in general. Write ↑↑E = {y ∈ X | ∃x ∈ E·x ≪ y},

↓↓E = {y ∈ X | ∃x ∈ E · y ≪ x}. X is continuous iff, for every x ∈ X , ↓↓x is a directed

family, and has x as least upper bound. One may be more precise: A basis is a subset B of

X such that any element x ∈ X is the least upper bound of a directed family of elements

way-below x in B. Then X is continuous if and only if it has a basis, and in this case X

itself is the largest basis. In a continuous poset X with basis B, the interpolation property

holds: whenever x ≪ z, then x ≪ y ≪ z for some y ∈ B (Mislove, 1998, Lemma 4.16). It
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follows that, in any continuous poset X , ↑↑x is Scott-open for all x, and every Scott-open

set U is a union of such sets, more precisely U =
⋃

x∈U∩B ↑↑x.

In any topological space, call finitary compact any subset of the form ↑E with E

finite. Every finitary compact is compact saturated. In a continuous dcpo X , the compact

saturated subsets Q are exactly the intersections
⋂

i∈I ↑Ei of filtered families (↑Ei)i∈I

of finitary compacts, see e.g., (Jung, 1998, Lemma 4.10, (ii)). (We order subsets by

inclusion, and a family is filtered if and only if it is directed in the converse ordering.)

It follows easily that the topology generated by the complements of sets ↑x, x ∈ X (the

upper topology of the ordering ≤), on a continuous dcpo X , is exactly the cocompact

topology (Lawson, 1988, Section V), so the patch topology on X coincides with the

Lawson topology. The latter is probably more well-known in domain theory, and is the

one generated by the Scott opens and the complements of sets ↑x, x ∈ X .

Unless otherwise mentioned, we shall always see every dcpo as a topological space, with

the Scott topology of its ordering. Every continuous dcpo X is sober hence well-filtered,

and locally compact. If additionally X is pointed , i.e., has a least element ⊥, then X

is compact. If finally X is also coherent, then X is stably compact. The reader may be

more familiar with the notion of Lawson-compactness, where X is Lawson-compact iff

it is compact in its Lawson topology. By the discussion above, Lawson-compactness is

equivalent to stable compactness on continuous dcpos. This is in fact true even on quasi-

continuous dcpos (Gierz et al., 2003, Theorem III-5.8), although it may fail on more

general classes of dcpos.

Note that [0, 1]σ is a continuous pointed dcpo, where x ≪ y if and only if x = 0 or

x < y. As we have seen, it is also stably compact. For any set I, then, [0, 1]Iσ is also a

stably compact, continuous, pointed dcpo. One can check that ≪ is defined by f ≪ g

iff f(i) = 0 for all i except for those in some finite subset J of I, and f(i) < g(i) for all

i ∈ J .

Bc-domains are bounded-complete continuous dcpos; bounded-completeness means

that any two elements x, y that have an upper bound also have a least upper bound.

Any bc-domain is coherent, hence stably locally compact. Any pointed bc-domain is

stably compact.

Given any poset X , with partial order ≤, the opposite poset Xop has the same elements

as X , and its ordering is the converse ≥ of ≤. We clearly have Xop op = X , where equality

is equality of posets, which implies the equality of orderings, hence also of the Scott

topologies.

A poset X is a bicpo if and only if both X and Xop are dcpos, meaning that directed

families have sups, and that filtered families have infs. Any stably compact space is a

bicpo for its specialization ordering: this follows easily from the fact that any sober space

is a dcpo in its specialization ordering (Abramsky and Jung, 1994, Proposition 7.2.13),

applied to X and Xd.

A bicontinuous bicpo is a poset X such that both X and Xop are continuous dcpos.

In this case, we still write ≪ for the way-below relation of X , and we write ≫ for the

way-below relation of Xop. Call ≫ the way-above relation of X : y ≫ x if and only if, for

every filtered family (zi)i∈I that has a greatest lower bound (a.k.a., an inf ) z such that

z ≤ x, then zi ≤ y for some i ∈ I already. Beware that in general ≫ is not the converse
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of ≪. As an example, [0, 1] with its natural ordering is a bicontinuous bicpo. However,

x ≪ y iff x = 0 or x < y, while y ≫ x iff y = 1 or x < y; so 0 ≪ 0 but 0 6≫ 0, while

1 6≪ 1 and 1 ≫ 1.

3. Powerdomains for Non-Deterministic Choice: The One-Sided Cases

Fix a state space X . Modeling non-deterministic choice from a subset of elements A of X

is simply done by specifying A, an element of the powerset P(X). When instead X is a

dcpo, or in fact any topological space, one has to replace P(X) by an appropriate notion of

powerdomain. Then several notions of powerdomains arise. We refer again to (Abramsky

and Jung, 1994; Gierz et al., 2003; Mislove, 1998) for background on powerdomains.

So, in the general case, fix a topological space X .

First, there is demonic choice, best modeled through the Smyth powerdomain Q(X).

Its elements are the non-empty compact saturated subsets Q of X . One domain-theoretic

tradition is to see Q(X) as a poset, with reverse inclusion ⊇. When X is well-filtered,

this yields a dcpo, and supi∈I Qi =
⋂

i∈I Qi for any directed (i.e., filtered for ⊆) family

(Qi)i∈I . If X is also locally compact, then this dcpo is also continuous, and Q ≪ Q′

iff int(Q) ⊇ Q′. When X is coherent, Q(X) is bounded-complete, Q and Q′ have an

upper bound if and only if Q ∩ Q′ is non-empty, and their least upper bound is Q ∩ Q′.

Finally, when X is compact, then Q(X) is pointed, and the least element is X itself. In

particular, Q(X) is a stably compact, continuous, pointed dcpo for any stably compact

space X .

Another, more topological, definition of a topology on Q(X) is the upper Vietoris

topology, which has a base given by subsets of the form 2U = {Q ∈ Q(X) | Q ⊆ U}, U

open in X . It is easy to see that every open in this topology is Scott-open, while if X is

well-filtered and locally compact, ↑↑Q = 2int(Q). Hence, in this case, the two topologies

coincide. Since we shall focus on stably compact spaces X , we shall therefore switch freely

between the two. Note also that the upper Vietoris topology is generated from subsets

of the form 2int(Q), Q compact saturated in X .

There are several ways to explain why elements of Q(X) model demonic choice. A deep

one is to show that Q(X) is the free dcpo-algebra of an inequational theory involving one

associative, commutative and idempotent symbol −∪ that must obey the extra inequality

x−∪y ⊑ x (Abramsky and Jung, 1994, Section 6.2.2). This holds as soon as X is a

continuous dcpo; in Q(X), −∪ is then just union.

I tend to prefer the following. First, if X is a continuous dcpo, any element of Q(X)

is the directed sup of finitary compacts ↑E. Then, if choice is described by ↑E, the

elements of ↑E are all possible choices, and the elements of E are the worst (least)

possible ones. A demon (think: a malicious scheduler that is required to pick one of the

possible choices) is then specified by what worst possible choices it could make. Since

E is finite, this explanation is only relevant for so-called finitely branching systems, see

e.g. (Johnstone et al., 1998) and references therein. I’ll propose a better explanation in

Section 7, see Lemma 7.5 and subsequent discussion.

The second form of choice is angelic choice, which is modeled using the Hoare pow-

erdomain H(X). Its elements are the non-empty closed subsets of X There is again a
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domain-theoretic and a topological definition of the topology one puts on H(X), but

they tend to differ in more cases than for the Smyth powerdomain.

The domain-theoretic definition is to order H(X) by inclusion ⊆. This is a complete

lattice, hence certainly a dcpo (whatever X is). The sup of the directed family (Fi)i∈I is

the closure cl(
⋃

i∈I Fi) of the union. However, H(X) is known to be a continuous dcpo

only when X is itself a continuous dcpo, or at least a continuous poset (one can e.g.,

adapt Theorem 4.23 of (Mislove, 1998) in the latter case); then the way-below relation

on H(X) is defined by F ≪ F ′ iff there is a non-empty finite subset E of (a given basis

of) X such that F ⊆ ↓E and E ⊆ ↓↓F ′. This is easily deduced from (Abramsky and

Jung, 1994, Theorem 6.2.10, Theorem 6.2.13). Then the subsets ↓E themselves, with E

non-empty and finite subsets of a given basis of X , form a basis of H(X), and ↓E ≪ F ′

in H(X) iff E ⊆ ↓↓F ′.

The topological definition is to equip H(X) with its lower Vietoris topology, generated

by subbasic opens 3U = {F ∈ H(X) | F ∩U 6= ∅}, U open in X . We shall write HV(X)

for this topological space, to distinguish it from the dcpo H(X). Note that, letting F be

the complement of U , the complement of 3U is �F = {F ′ ∈ H(X) | F ′ ⊆ F}, i.e., the

downward-closure of {F} in H(X).

It is easy to see that 3F is Scott-open, so the topology of H(X) is finer than that of

HV(X). When X is a continuous dcpo, the two topologies coincide, i.e., HV(X) = H(X),

because, conversely, any Scott open is a union of sets of the form ↑↑H(X)(↓X E) (subscripts

indicate in which spaces we must take various arrows), i.e., of the form {F ′ ∈ H(X) |

E ⊆ ↓↓F ′} =
⋂

x∈E 3↑↑x.

In case X is a continuous dcpo, H(X) can be described as a similar free dcpo-algebra,

this time using the converse inequality x ⊑ x−∪y; −∪ again denotes union. One can also see

the elements ↓E of the above basis for H(X) as specified by the set E of best (highest)

possible choices.

We will turn to the Plotkin powerdomain in Section 4. However, we observe right away

that, in the world of stably compact spaces, Smyth and Hoare are dual of each other.

Theorem 3.1 is the first trace we observe of the action of de Groot duality on models of

choice.

Theorem 3.1 (Duality, One-Sided Non-Deterministic Case). Let X be a stably

compact space. Then Q(X) is stably compact, and Q(X)d = HV(Xd).

Proof. First, we have already noticed that Q(X) is stably compact. Then, Q(X)d and

HV(Xd) certainly have the same elements, namely the non-empty compact saturated

subsets of X . We must now show that their topologies coincide, and we do this by

showing that the two spaces have the same closed subsets.

Since X is well-filtered and locally compact, Q(X) is not only stably compact, but

also a continuous dcpo. So Q(X) is Lawson-compact, and the cocompact and upper

topologies of its ordering ⊇ coincide. This means that the upward-closures of elements

Q of Q(X) form a subbase of closed sets for Q(X)d. These upward-closures are just �Q.

Conversely, we have already noted, in introducing the lower Vietoris topology, that a

subbase of closed sets for H(Xd) is given by all sets of the form �F , F closed in Xd.

Since Q(X)d and H(Xd) have the same subbasic closed sets, their topologies agree.
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Corollary 3.2. For any stably compact space X , Q(X) and HV(X) are stably compact.

Indeed, by Theorem 3.1, HV(X) = Q(Xd)d. That HV(X) is stably compact when X is

was proved by Cohen (Cohen, 2006), although with a more complex argument.

Another easy consequence of Theorem 3.1 is more domain-theoretic:

Corollary 3.3. Let X be a stably compact continuous dcpo. Then H(X) is a stably

compact, bicontinuous bicpo, and is (qua poset) the opposite of Q(Xd).

Proof. Since X is a continuous dcpo, H(X) is, too. Also, H(X) = HV(X). By Theo-

rem 3.1, HV(X) = Q(Xd)d. Looking at the underlying posets, H(X) equals Q(Xd)op. In

particular, the opposite H(X)op equals Q(Xd), which is a continuous dcpo, since Xd is

well-filtered and locally compact.

In general, the way-below and the converse of the way-above relations do not coincide

on H(X). Indeed, take X = [0, 1]σ. The elements of H([0, 1]σ) are of the form [0, t],

0 ≤ t ≤ 1, so that H([0, 1]σ) is canonically isomorphic to [0, 1]σ; but we have seen that

the way-below and converse of the way-above did not coincide on the latter.

The first part of Corollary 3.3, that H(X) is a stably compact, bicontinuous bicpo, is

actually an instance of a more general result, which does not require stable compactness.

If X is a continuous dcpo, then O(X) is a completely distributive lattice (Gierz et al.,

2003, Theorem II-1.14). It follows that its opposite H⊥(X), the poset of all closed subsets

(including the empty set), is also a completely distributive lattice. This is more than what

we claimed above for H(X): any completely distributive lattice is a bicontinuous bicpo

(Gierz et al., 2003, Theorem I-3.16(2)), and is compact T2 in its Lawson topology (Gierz

et al., 2003, Corollary III-1.11), hence stably compact. In fact, completely distributive

lattices L have many other properties: the Scott and upper topologies coincide on L; the

Scott topology of Lop then coincides with the lower topology, generated by complements

of set of the form ↑x, x ∈ L; the Lawson topologies of L and Lop both coincide with

the interval topology, generated by complements of intervals ↑x∩ ↓ y, so that L is linked

bicontinuous (Gierz et al., 2003, Proposition VII-2.10).

H(X) need not form a lattice except when X has a bottom element. However, we can

still show that H(X) is a stably compact, bicontinuous bicpo provided X is a compact

continuous dcpo. Since X is continuous, H(X) is, too. Then H(X) is a bc-domain, and

is therefore stably compact and continuous. H(X)op is isomorphic to the poset O∗(X)

of all open subsets of X distinct from X . We shall argue in Lemma 3.8 that, if X is

compact, then O∗(X) is a bc-domain. In particular, H(X)op is also a bc-domain, hence

also stably compact and continuous. This only requires X to be a compact, not stably

compact, continuous dcpo.

Let us turn to the Smyth powerdomain. We agree to say that Xd is a continuous

dcpo iff the specialization ordering ≥ of Xd makes Xd a continuous dcpo, and that the

topology of Xd coincides with the Scott topology. This accords with our convention that

equality of topological spaces implies equality of their topologies.

Corollary 3.4. Let X be a stably compact space whose de Groot dual Xd is a continuous
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dcpo. Then Q(X) is a stably compact, bicontinuous bicpo, and is (qua poset) the opposite

of H(Xd).

Proof. Since X is well-filtered and locally compact, Q(X) is a continuous dcpo. Since

Xd is a continuous dcpo, H(Xd) = HV(Xd) is, too. Then, as a poset, Q(X) is the opposite

of HV(Xd) by Theorem 3.1. So Q(X) is a bicontinuous bicpo.

Note that, similarly to H⊥(X) discussed above, Q⊤(X), defined as the collection of all

compact saturated subsets of X , including the empty set, is again a completely distribu-

tive lattice in this case, which is much more than a stably compact, bicontinuous bicpo.

This is because Q⊤(X) is the lattice of complements of elements of O(Xd).

We obtain a completely symmetric result by using the following class of spaces, which

occurs naturally in this context.

Definition 3.5. A stably bicontinuous bicpo is a stably compact space X such that both

X and Xd are continuous dcpos.

By this we again mean that the topologies of X and of Xd are the Scott topologies of

the underlying posets X and Xop, and that these posets are continuous dcpos. Any cube

[0, 1]Iσ, for any set I, is a stably bicontinuous bicpo. In fact, the cubes are completely dis-

tributive lattices, and any completely distributive lattice is a stably bicontinuous bicpo.

We have seen that, on the cube, f ≪ g iff f(i) = 0 for all i except for those in some

finite subset J of I, and f(i) < g(i) for all i ∈ J . Symmetrically, g ≫ f iff g(i) = 1 for

all i except for those in some finite subset J of I, and f(i) < g(i) for all i ∈ J . So ≪ is

not the opposite of ≫ in general.

In a stably bicontinuous bicpo, it is equivalent to talk about Xd or Xop: Xop is indeed

a stably compact continuous dcpo that coincides with Xd. In fact, one may also define

stably bicontinuous bicpos as bicontinuous dcpos X such that X and Xop have the same

Lawson (or patch) topology. E.g., the Lawson topology on [0, 1]Iσ, as well as on ([0, 1]op)
I
σ

is the usual product topology on [0, 1]I .

Corollary 3.6. For any stably bicontinuous bicpo X , Q(X) and H(X) are stably bi-

continuous bicpos, and Q(X)op = H(Xop), H(X)op = Q(Xop).

This follows directly from Corollaries 3.3 and 3.4.

Another corollary of Theorem 3.1 is as follows.

Lemma 3.7. Let X be stably compact. For every compact saturated subset Q of X ,

�Q = {Q′ ∈ Q(X) | Q′ ⊆ Q} is compact saturated in Q(X).

This can also be proved independently, using Alexander’s Subbase Lemma. In fact, an-

other proof of Theorem 3.1 consists in showing that any subbasic closed set for one

topology is closed in the other one, and starts from Lemma 3.7: note that �Q is a sub-

basic closed set in H(Xd), and is compact saturated in Q(X) by Lemma 3.7; conversely,

since Q(X) is a continuous dcpo, every compact saturated subset of Q(X) is a directed

union of finitary compacts ↑Q(X) Ei, i ∈ I, where each Ei is a finite subset of Q(X),

however ↑Q(X) Ei =
⋃

Q∈Ei
�Q is closed in H(Xd).

Theorem 3.1 has apparently not been published until now. However, Mart́ın Escardó
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told me at the Domains IX Workshop in September 2008 that he had known about this

result since 2000. He presented the following in a McGill university seminar in 2003,

although this did not make it into the notes (Escardó, 2003). The following lemma is in

fact how I also came to discover Theorem 3.1 (Goubault-Larrecq, 2007, Section 3.4); the

proof using Lemma 3.7 above is a simplified argument; the even shorter argument given

as proof for Theorem 3.1 is due to one of the anonymous referees. We let O(X) denote

the complete lattice of all open subsets of X ; recall that O∗(X) = O(X) \ {X}.

Lemma 3.8. Let X be a stably compact space. Then the complement map A 7→ X \A

defines a homeomorphism between:

HV(X) and O∗(X)d

Q(X) and O∗(Xd)

Proof. First, we observe that X is locally compact, hence O(X) is a continuous com-

plete lattice, see e.g. Proposition 4.2.15 (Abramsky and Jung, 1994). Using similar ar-

guments, one can see that O∗(X) is a continuous poset as soon as X is locally compact,

where U is way-below V iff U ⊆ Q ⊆ V for some compact saturated subset Q. O∗(X) is

a dcpo provided X is compact: for any directed family of opens (Ui)i∈I in X , all distinct

from X , their union cannot be X by compactness, and therefore serves as the sup of the

family in O∗(X). It is then clear that O∗(X) is a bc-domain, hence is stably compact.

So the notation O∗(X)d makes sense.

That the complements of elements of HV(X) are the elements of O∗(X)d, i.e., the

complements of open subsets of X other than X , is clear. Similarly, the complements of

elements of Q(X) are the cocompact subsets of X distinct from X , i.e., the elements of

O∗(Xd).

The topology of O∗(X)d is the cocompact topology of O∗(X), and coincides with the

upper topology of the ordering, since O∗(X) is continuous. So it is generated by the

complements of sets ↑O∗(X) U , U open in X , namely the sets {U ′ ∈ O∗(X) | U 6⊆ U ′} =

{X \ F | F ∈ H(X), F ∈ 3U}. The complement map sends this to 3U . Conversely,

the image in O∗(X) of 3U by the complement map is the complement of the finitary

compact ↑O∗(X) U . So the complement map indeed defines a homeomorphism between

HV(X) and O∗(X)d.

The ordering on the image of Q(X) by the complement map is ordinary inclusion, the

same as on O∗(Xd). Since the topologies on both spaces is entirely determined as the

Scott topologies on the same ordering ⊆, they are the same space.

Theorem 3.1 easily follows. One can also observe that Lemma 3.8 implies that Q(HV(X))

is homeomorphic to O(O(X)), naturally in X , for every stably compact space X . Vickers

and Townsend (Vickers and Townsend, 2004) observed that HV(Q(X)) is also homeo-

morphic to O(O(X)), naturally in X . The resulting space, up to homeomorphism is the

double powerdomain of X . Vickers and Townsend reason in the category of locales instead

of topological spaces, and call this the double powerlocale; they also don’t require stable

compactness.
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4. Powerdomains for Erratic Choice I

The Plotkin powerdomain for erratic non-determinism has even more variants than the

Hoare and Smyth powerdomains.

Let X be any space. A lens L of X is the intersection Q ∩ F of a compact saturated

subset Q of X and a closed subset F of X , provided this intersection is non-empty. Then

L has a canonical presentation as ↑L∩ cl(L), where ↑L is compact saturated, and cl(L)

is closed. There is a domain-theoretic definition, as a poset Pℓ(X) of lenses, ordered

by the topological Egli-Milner ordering ⊑EM, defined by L ⊑EM L′ iff ↑L ⊇ ↑L′ and

cl(L) ⊆ cl(L′). When X is a stably compact continuous dcpo, then Pℓ(X) is a stably

compact continuous dcpo. Stable compactness was proved by Jimmie Lawson (Lawson,

1987, Theorem, p.156), see also (Mislove, 1998, Corollary 4.48). Continuity is claimed in

(Abramsky and Jung, 1994, Exercise 6.2.23(11)), and follows from Construction IV.8.12

and subsequent theorems of (Gierz et al., 2003). A basis is given by the finitary lenses ,

i.e., the sets of the form 〈E〉, E non-empty finite, where 〈E〉 = ↑E ∩ ↓E. 〈E〉 is the set

of elements that are above some minimal element of E (the worst choices) and below

some maximal element of E (the best choices). Then 〈E〉 ≪ L if and only if E ⊆ ↓↓F and

Q ⊆ ↑↑E, where F = cl(L) and Q = ↑L.

There is also a topological version of the Plotkin powerdomain, which we shall write

PℓV(X), namely the space of lenses of X with the Vietoris topology, generated by sets

{L ∈ Pℓ(X) | L ⊆ U}, which we shall write 2U again, and {L ∈ Pℓ(X) | L ∩ U 6= ∅},

which we shall write 3U , for any subset U of X . It is easy to see that the specialization

ordering of PℓV(X) is ⊑EM. The Scott topology of Pℓ(X) is always finer than the Vietoris

topology. When X is a stably compact, continuous dcpo, the converse holds, so PℓV(X) =

Pℓ(X). Indeed, any subbasic Scott-open ↑↑Pℓ(X)〈E〉 can be written as the Vietoris open⋂
x∈E 3↑↑x ∩ 2↑↑E.

Call a subset L of X patch-compact iff it is compact in Xpatch, and order-convex iff

whenever x, z ∈ L and x ≤ y ≤ z, then y ∈ L. Clearly, every lens L is order-convex, and

moreover if X is stably compact, then L is patch-closed, hence patch-compact in X . The

converse also holds, see Lemma 4.2, which rests on the following fact.

Fact 4.1. Let X be a stably compact space. For every patch-compact subset L of X ,

↓L is closed in X , and ↑L is compact saturated in X .

Indeed, L is compact both in X and in Xd, since the larger the topology, the smaller

the collection of compact subsets. Then ↓L is the saturation on L in Xd, since the

specialization ordering of Xd is the opposite of ≤. It follows that ↓L is compact saturated

in Xd, hence closed in X . Similarly, ↑L is compact saturated in X .

Lemma 4.2. Let X be stably compact. The lenses L of X are exactly the non-empty,

patch-compact, order-convex subsets of X . Moreover, every lens is a strong lens , i.e.,

↓L = cl(L). Finally, the specialization ordering ⊑EM on PℓV(X) reduces to the ordinary

Egli-Milner ordering, i.e., L ⊑EM L′ iff:

for every x ∈ L, there is an x′ ∈ L′ such that x ≤ x′, and

for every x′ ∈ L′, there is an x ∈ L such that x ≤ x′.
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Proof. We have given one direction of the proof above. Conversely, let L be non-empty,

patch-compact, and order-convex. By Fact 4.1, ↓L is closed, and ↑L is compact saturated

in X . Also, L = ↑L∩ ↓L because L is order-convex, whence L is a lens. Moreover, since

↓L is closed and contains L, it contains cl(L). Conversely, ↓L ⊆ cl(L) since every closed

set is downward-closed. So ↓L = cl(L), and theferore L is a strong lens.

The characterization of ⊑EM follows from the fact that every lens is strong.

This is well-known when X is a stably compact continuous dcpo (Gierz et al., 2003,

Proposition IV-8.17): in this case, the lenses are exactly the order-convex non-empty

Lawson-compact subsets of X (Abramsky and Jung, 1994, Corollary 6.2.21), and we have

already seen that Lawson-compactness and patch-compactness coincided on continuous

dcpos.

Lemma 4.2 entails that PℓV(X)d and PℓV(Xd) have the same elements, namely the

non-empty, patch-compact, order-convex subsets of X . Indeed, patch-compactness is the

same notion in X and in Xd, while order-convexity is left invariant by reversing the

ordering.

We now observe that the Plotkin powerdomain construction is self-dual , in the sense

that PℓV(X)d and PℓV(Xd) not only have the same elements, but in fact also the same

topology, hence are the same space. This will be Theorem 4.5, and is the second trace

we observe of the action of de Groot duality on models of choice.

Lemma 4.3. In a topological space X , let:

�Q = {L ∈ PℓV(X) | L ⊆ Q} �Q = {L ∈ PℓV(X) | L ∩ Q 6= ∅}

for any compact saturated subset Q of X .

Let X be compact. Then �Q and �Q are compact saturated in PℓV(X), for any

compact saturated subset Q.

Proof. Use Alexander’s Subbase Lemma, and show that one can extract a finite sub-

cover from a cover of �Q by subbasic opens 2Ui, i ∈ I, and 3Vj , j ∈ J . I.e., assume

�Q ⊆
⋃

i∈I 2Ui ∪
⋃

j∈J 3Vj . Let L0 = Q \
⋃

j∈J Vj .

If L0 is empty, then Q ⊆
⋃

j∈J Vj , so Q ⊆
⋃

j∈J0
Vj for some finite subset J0 of J .

Then (3Vj)j∈J0
is the desired finite subcover.

Otherwise, L0 is a lens, L0 ∈ �Q, and L0 6∈
⋃

j∈J 3Vj . So L0 ⊆ Ui for some i ∈ I. By

the definition of L0, then, Q ⊆ Ui ∪
⋃

j∈J Vj , so Q ⊆ Ui ∪
⋃

j∈J0
Vj for some finite subset

J0 of J . Then 2Ui and (3Vj)j∈J0
form the desired finite subcover.

We show that �Q is compact saturated in a similar way. Assume �Q ⊆
⋃

i∈I 2Ui ∪⋃
j∈J 3Vj . Let L0 = X \

⋃
j∈J Vj .

If L0 is empty, then X ⊆
⋃

j∈J Vj . Since X is compact, X ⊆
⋃

j∈J0
Vj for some finite

subset J0 of J . Then (3Vj)j∈J0
is the desired finite subcover.

Otherwise, L0 is a lens, again because X is compact, and L0 6∈
⋃

j∈J 3Vj . So either

L0 6∈ �Q or L0 ⊆ Ui for some i ∈ I.

In the latter case, X ⊆ Ui ∪
⋃

j∈J Vj , so X ⊆ Ui ∪
⋃

j∈J0
Vj for some finite subset J0 of

J , again by compactness of X . Then 2Ui and (3Vj)j∈J0
form the desired finite subcover.

In the former case, where L0 6∈ �Q, it must be that L0∩Q is empty, i.e., Q ⊆
⋃

j∈J Vi.
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So Q ⊆
⋃

j∈J0
Vi for some finite subset J0 of J . Then (3Vj)j∈J0

is the desired finite

subcover.

When X is stably compact, observe that �Q is the complement of the subbasic open

subset 3(X \ Q) of PℓV(Xd), and that �Q is the complement of the subbasic open

subset 2(X \ Q) of PℓV(Xd), so every closed subset of PℓV(Xd) is cocompact in PℓV(X):

Lemma 4.3 entails immediately that the topology of PℓV(Xd) is coarser than that of

PℓV(X)d. Here is the converse statement.

Lemma 4.4. Let X be stably compact. Then every compact saturated subset Q of

PℓV(X) is closed in PℓV(Xd).

Proof. Consider the map i : PℓV(X) → Q(X)×HV(X) defined by i(L) = (↑L, cl(L)).

We claim that i is an embedding. First, the topology of Q(X) ×HV(X) is generated by

subbasic open sets of the form 2U ×3V , where U and V are open in X , and i−1(2U ×

3V ) = 2U ∩ 3V , so i is continuous. The image of the subbasic open 2U of PℓV(X) is

(2U ×HV(X)) ∩ Im i, while the image of 3V is (Q(X)× 3V ) ∩ Im i, which are open in

Im i, so i is an embedding.

Given any compact saturated subset Q of PℓV(X), its image i(Q) is compact, so its

saturation ↑ i(Q) in Q(X) × HV(X) is compact saturated, hence closed in (Q(X) ×

HV(X))d = Q(X)d ×HV(X)d = HV(Xd)×Q(Xd), using Theorem 3.1. By the definition

of the topology on HV(Xd)×Q(Xd), one can write the (open) complement W of ↑ i(Q)

as a union of open rectangles U ×V , where U and V are taken from bases of open sets of

HV(Xd), resp. Q(Xd). So W is a union of sets of the form (
⋂n

i=1 3Vi) × 2U , where U ,

V1, . . . , Vn are open in Xd.

The set i−1(W) is then a union of sets of the form i−1((
⋂n

i=1 3Vi)×2U) =
⋂n

i=1 3Vi∩

2U , where U , V1, . . . , Vn are open in Xd. So i−1(W) is open in PℓV(Xd). Its complement

i−1(↑ i(Q)) is therefore closed in PℓV(Xd).

It only remains to show that i−1(↑ i(Q)) = Q. The inclusion from right to left is

obvious. Conversely, let x ∈ i−1(↑ i(Q)). Then there is an y ∈ Q such that i(y) ≤ i(x). As

every topological embedding is also an order-embedding for the respective specialization

orderings, y ≤ x. Now Q is saturated, so x ∈ Q.

Putting Lemma 4.2, Lemma 4.3, and Lemma 4.4 together, we obtain:

Theorem 4.5 (Duality, Erratic Case). Let X be a stably compact space. Then

PℓV(X)d = PℓV(Xd).

This result can be analyzed more deeply as follows. Recall the embedding i : PℓV(X) →

Q(X)×HV(X), mapping L to (↑L, cl(L)), which we have used in the proof of Lemma 4.4.

This allows us to consider PℓV(X) as a subspace Im i of Q(X) × HV(X), up to the

homeomorphism i. The elements of Im i are certain pairs (Q, F ) ∈ Q(X) × HV(X),

namely those such that Q ∩ F 6= ∅, Q ⊆ ↑(Q ∩ F ), and F ⊆ cl(Q ∩ F ), and Im i is

equipped with the induced topology.

Replacing X by Xd, there is also an embedding j : PℓV(Xd) → Q(Xd)×HV(Xd). By

Lemma 4.2, i(L) = (↑L, ↓L). This allows us to give the following symmetrical description
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of j, remembering that the specialization ordering of Xd is the opposite of that of X :

j(L) = (↓L, ↑L).

It follows that Im i ∼= PℓV(X) and Im j ∼= PℓV(Xd) are stably compact spaces, which

are in one-to-one correspondence through the involution ⊥ that sends (Q, F ) to (F, Q).

In this sense, it is seen, more clearly than in Theorem 4.5, that again duality swaps angels

and demons.

One finally notes that this idea yields an alternative proof to Theorem 4.5, which makes

the role of ⊥ slightly clearer. We use here the notions of perfect and patch-continuous

maps; we shall again use them later.

Definition 4.6 (Perfect map). Let X , Y be topological spaces. A map f : X → Y is

perfect if and only if it is continuous, and the inverse image f−1(Q) of every compact

saturated subset Q of Y is compact in X ; f is patch-continuous whenever it is continuous

from Xpatch to Y patch.

Every perfect map is patch-continuous, and order-preserving. In fact, when X and Y

are locally compact, the perfect maps are exactly the patch-continuous, order-preserving

maps, see (Jung, 2004, Proposition 2.14) or (Alvarez-Manilla et al., 2004, Proposition 13).

A similar notion is that of a proper map (Gierz et al., 2003, Definition VI-6.20), which is

a perfect map f such that, additionally, ↓ f(F ) is closed for every closed subset F of X .

When X is sober and Y is locally compact, the proper maps coincide with the perfect

maps (Gierz et al., 2003, Lemma VI-6.21(ii)).

Alternate proof of Theorem 4.5. Consider Im i, Im j with the induced topologies of their

ambient spaces, respectively Q(X)×HV(X) and Q(Xd)×HV (Xd). We prove Theorem 4.5

under the following assumption, which we prove later:

(∗) Assumption: the topology of (Im i)d is induced from that of (Q(X) ×HV(X))d.

Note that (Im i)d makes sense, as Im i is homeomorphic to the stably compact space

PℓV(X), and is therefore stably compact as well.

Let c be the swapping map, namely the homeomorphism that sends (Q, F ) ∈ Q(X)×

HV(X) to (F, Q) ∈ HV(X) ×Q(X). Then j coincides with c ◦ i.

Now, c is also a homeomorphism of the corresponding de Groot duals, i.e., of (Q(X)×

HV(X))d onto (HV(X) × Q(X))d. By Theorem 3.1, c is also a homeomorphism from

HV(Xd) × Q(Xd) onto Q(Xd) ×HV(Xd). Its restriction to Im i is the homeomorphism
⊥ from Im i (with the induced topology of HV(Xd) × Q(Xd) = (Q(X) × HV(X))d)

to Im j (with the induced topology of Q(Xd) × HV(Xd)). Using (∗), ⊥ is therefore a

homeomorphism from (Im i)d to Im j.

Since i is a homeomorphism of PℓV(X) onto Im i, it is also one of PℓV(X)d onto (Im i)d,

so j−1 ◦ ⊥ ◦ i is a homeomorphism of PℓV(X)d onto PℓV(Xd). However, j−1 ◦ ⊥ ◦ i is

the identity map, and we conclude.

Although this proof is short, and makes the role of ⊥ clearer, it all depends on proving

(∗) above. Let us proceed.

We first claim that i : PℓV(X) → Q(X)×HV(X) is perfect. Using similar arguments as

in the proof of Lemma 4.4, the complement W of Q in Q(X)×HV(X) is a union of sets of
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the form (
⋂n

i=1 3Vi)×2U , where U , V1, . . . , Vn are open in Xd. Then i−1(W) is a union

of sets of the form
⋂n

i=1 3Vi∩2U , which are open in PℓV(Xd). So its complement i−1(Q)

is closed in PℓV(Xd), and is therefore an intersection of finite unions of sets of the form

�Q and �Q, Q compact saturated in X . By Lemma 4.3, the latter are compact saturated

in PℓV(X), and since PℓV(X) is stably compact, i−1(Q) is also compact saturated.

It follows that i is patch-continuous. In particular, and since PℓV(X)patch is compact,

Im i is a compact subset of (Q(X) ×HV(X))patch.

We now prove (∗), i.e., that the topology of (Im i)d is induced from that of (Q(X) ×

HV(X))d. It is enough to show that the compact saturated subsets Q of Im i are exactly

the intersections of compact saturated subsets Q′ of Q(X) × HV(X) with Im i. In one

direction, consider a compact saturated subset Q of Im i, and take Q′ equal to the

saturation ↑Q of Q in Q(X)×HV(X). Since Q is also compact in Q(X)×HV(X), Q′ is

compact saturated, and it is easy to check that Q = Q′ ∩ Im i. Conversely, we must show

that every compact saturated subset Q′ of Q(X)×HV(X) induces a compact saturated

subset Q = Q′ ∩ Im i of Im i. Note that Q′ is closed in (Q(X) × HV(X))patch, and Im i

is compact in the same space, so Q = Q′ ∩ Im i is compact in (Q(X) × HV(X))patch.

However, the latter is T2, so Im i is also closed in (Q(X)×HV(X))patch. The subset Q of

Im i is therefore compact also in Im i. Since Q is clearly saturated in Im i, we conclude: the

compact saturated subsets of Im i are exactly the intersections of those of Q(X)×HV(X)

with Im i.

We again draw a domain-theoretic corollary in the realm of bicontinuous bicpos. Recall

that Pℓ(X) is the poset of all lenses ordered by the topological Egli-Milner ordering, and

that strong lenses are those lenses L such that ↓L = cl(L). On a coherent continuous dcpo

X , Pℓ(X) is a stably compact continuous dcpo, and the Vietoris and Scott topologies

coincide. It follows immediately:

Corollary 4.7. Let X be a stably bicontinuous bicpo. Then Pℓ(X) is a stably bicon-

tinuous bicpo, and Pℓ(X)op = Pℓ(Xop).

This time, and contrarily to the cases of the Smyth and Hoare powerdomains, we cannot

conclude that Pℓ(X) is a completely distributive lattice. In fact, Pℓ(X) is not even

bounded complete in general, see (Abramsky and Jung, 1994, Exercise 6.2.23(8)): take

X to be the four-element lattice ⊥ ≤ a, b ≤ ⊤ with a and b incomparable, and realize

that {(⊥, a), (⊥, b)} and {(a,⊥), (b,⊥)} are elements of Pℓ(X) with two incomparable

minimal upper bounds.

Again, the way-below and the converse of the way-above relations do not coincide.

Take again X = [0, 1]σ. The lens of X are subintervals [a, b] of X with a ≤ b, i.e., finitary

lenses 〈{a, b}〉. Recall that, in general, the way-below relation on Pℓ(X) specializes to

finitary lenses by: 〈E〉 ≪ 〈E′〉 iff E ⊆ ↓↓E′ and E′ ⊆ ↑↑E. So in X = [0, 1]σ, [a, b] ≪ [a′, b′]

iff a ≪ a′ and b ≪ b′. Using Corollary 4.7, [a′, b′] ≫ [a, b] iff a′ ≫ a and b′ ≫ b. So for

example, [0, 0] ≪ [0, 0] but [0, 0] 6≫ [0, 0], while [1, 1] ≫ [1, 1] but [1, 1] 6≪ [1, 1].
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5. Powerdomains for Erratic Choice II: A-Valuations

There is another way to prove the same results as above, using a functional view of the

various powerdomains. This functional view was studied at length by Reinhold Heckmann

in his PhD Thesis (Heckmann, 1990). The main reason why I am mentioning this is

that, apart from the fact that this is a useful alternate viewpoint, this will give us the

opportunity to introduce some technical tools that we shall need later on, but in a slightly

simpler setting. However, I am aware that reading again about the Plotkin powerdomain

is probably not an exciting prospect. In this case, the reader should proceed directly

to Section 6, and return back to this section for missing information—in particular, to

Proposition 5.5 on solutions of patch-continuous systems, Lemma 5.7 and Lemma 5.10

(Scott’s formula), or Lemma 5.12 on retracts of stably compact spaces.

Let S = {0, 1} be Sierpiński space. The opens of S are ∅, S and {1}. Alternatively, S is

the dcpo obtained from the ordering 0 < 1; this is stably compact, and in fact another

example of a completely distributive lattice, in particular of a stably bicontinuous bicpo.

Spatch has the discrete topology.

Consider the Smyth powerdomain Q(X). Every Q ∈ Q(X) defines a map uQ : O(X) →

S by uQ(U) = 1 iff Q ⊆ U . (The notation is an anticipation on the unanimity games

of Section 6. Heckmann’s definition is the same, only replacing O(X) by the isomorphic

space of all continuous maps from X to S.) Then uQ is Scott-continuous, and preserves

finite infs: uQ(U1∩. . .∩Un) = 1 iff infn
i=1 uQ(Ui) = 1. Conversely, every Scott-continuous,

finite-inf-preserving map α : O(X) → S is of the form uQ for some non-empty compact

saturated set Q, as soon as X is sober. Consider indeed the Scott-open filter of all opens U

such that α(U) = 1, and use the Hofmann-Mislove theorem to show that their intersection

is the desired element Q. It is also easy to show that this bijection between Q(X) and

the space of Scott-continuous finite-inf-preserving maps is an order-isomorphism, and a

homeomorphism once one equips the latter with the topology generated by 2U = {α |

α(U) = 1}, U open in X .

Similarly, there is an isomorphism between H(X) and the space of Scott-continuous,

finite-sup-preserving maps (equivalently, the maps that preserve all sups): for every F ∈

H(X), let eF : O(X) → S map every open U to 1 iff F ∩ U 6= ∅. (We anticipate on the

example games of Section 6.) One retrieves F such that eF = α from any sup-preserving

map α by letting F be the complement of the largest open set U such that α(U) = 0. The

topology on the space of sup-preserving maps that makes it homeomorphic to HV(X) is

generated by 3U = {α | α(U) = 1}, U open in X .

One can give a similar functional description of lenses L by a pair of maps u↑L, ecl(L).

Alternatively, this is equivalent to a single map α from O(X) to S×S, where α(U) = (1, 1)

if L ⊆ U , α(U) = (0, 1) if L 6⊆ U but L ∩ U 6= ∅, and α(U) = (0, 0) if L ∩ U = ∅. The

case α(U) = (0, 1), where L 6⊆ U and L∩U = ∅, does not occur as lenses are non-empty.

So one can describe lenses by maps from O(X) to the subspace {(0, 0), (0, 1), (1, 1)}

of S × S. Call this subspace A, and rename (0, 0) as 0, (1, 1) as 1, and (0, 1) as M: then

we get exactly Heckmann’s A-valuations (Heckmann, 1997). The formal definition is as

follows.
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Definition 5.1 (A-valuation, PV(X)). Let A be the dcpo with three elements 0, M,

and 1, with ordering ⊑ such that 0 ⊑ M ⊑ 1. Let
⊔

, ⊔ denote sup in A.

An A-valuation on the topological space X is a map α from O(X) to A such that:

1 α is strict : α(∅) = 0;

2 α is normalized : α(X) = 1;

3 α is monotone: if U ⊆ V then α(U) ⊑ α(V ), for all opens U, V ;

4 if U is an open such that α(U) = 0 then α(U ∪ V ) = α(V ) for all opens V ;

5 if U is an open such that α(U) = 1 then α(U ∩ V ) = α(V ) for all opens V .

An A-valuation α is continuous if and only if α(
⋃

i∈I Ui) =
⊔

i∈I α(Ui) for every directed

family of opens (Ui)i∈I .

We let P(X) be the dcpo of all continuous A-valuations, ordered pointwise, i.e., by

⊑A, defined by α ⊑A α′ iff α(U) ⊑ α′(U) for every open U of X .

We let PV(X) be the space of all continuous A-valuations on X with the Vietoris

topology, generated by:

2U = {α continuous A-valuation | α(U) = 1}

3U = {α continuous A-valuation | α(U) 6= 0}

The Vietoris topology above is nothing else than the so-called topology of pointwise

convergence. On any space F of functions from a space Z to a space Y , the topology

of pointwise convergence is that induced by the product topology on Y Z . This topology

will play an important role in the rest of this paper. Note that if Y is compact, then

Y Z is compact by Tychonoff’s Theorem; this will be the starting point of all our proofs

of compactness. Note also that if F ′ is a subset of F , the induced topology is again the

topology of pointwise convergence.

By definition, the topology of pointwise convergence on F has subbasic open sets of

the form [z ∈ V ] = {f ∈ F | f(z) ∈ V }, where z ∈ Z, and V is open in Y . When

Z = O(X), Y = A, and F = PV(X), the topology of pointwise convergence is therefore

generated by the subbasic opens [U ∈ {M, 1}] = 3U and [U ∈ {1}] = 2U , U ∈ O(X).

So, as claimed, this is the same as the Vietoris topology.

Let us briefly explain the connection between continuous A-valuations and lenses. One

may show that, when X is sober, PV(X) is naturally homeomorphic to the following space

P ′
V(X). For lack of a better name, call quasi-lens on X any pair (Q, F ) of a compact

saturated subset Q of X and a closed subset F of X such that L = Q∩ F is non-empty,

Q = ↑L, and for every open U containing Q, F ⊆ cl(U ∩ F ). Let P ′
V(X) be the space of

quasi-lenses on X , with the topology generated by sets which we write again 2U and 3U :

2U = {(Q, F ) ∈ P ′
V(X) | Q ⊆ U}, 3U = {(Q, F ) ∈ P ′

V(X) | F ∩ U 6= ∅}. Accordingly,

we call this topology the Vietoris topology on P ′
V(X).

We leave it as an exercise to the reader to show the following.

Fact 5.2. If X is sober, then PV(X) is homeomorphic to P ′
V(X). The homeomorphism

is as follows. In one direction, every quasi-lens (Q, F ) gives rise to a continuous A-

valuation (Q, F )
∗
, defined by (Q, F )

∗
(U) = 1 if Q ⊆ U , (Q, F )

∗
(U) = 0 if F ∩U = ∅, and

(Q, F )
∗
(U) = M otherwise. Conversely, one retrieves a quasi-lens (Q, F ) = α◦ from any
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continuous A-valuation α by: Q is the intersection of all opens U such that α(U) = 1,

and F is the complement of the largest open U such that α(U) = 0.

In a stably compact space, the notion of quasi-lens coincides with that of a lens, even

with a strong lens, so there is not much point in dealing with quasi-lenses after all. I

originally derived this from Theorem 5.21 below and Fact 5.2. The following direct proof

is due to one of the anonymous referees.

Proposition 5.3. In a stably compact space X , every quasi-lens (Q, F ) induces a lens

Q ∩ F ; this is even a strong lens.

In particular, PℓV(X) and PV(X) are homeomorphic: in one direction, for every lens

L, let L∗ be the continuous A-valuation defined by L∗(U) = 1 if L ⊆ U , L∗(U) = 0 if

L ∩ U = ∅, and L∗(U) = M otherwise; conversely, for every continuous A-valuation α,

let α◦ be the lens Q ∩ F , where Q is the intersection of all opens U such that α(U) = 1,

and F is the complement of the largest open U such that α(U) = 0.

Proof. We first observe that: (∗) for every filtered family (Li)i∈I of patch-compact sub-

sets of X , ↓
⋂

i∈I Li =
⋂

i∈I ↓Li. The inclusion from left to right is obvious. Conversely,

for any x ∈
⋂

i∈I ↓Li, the family (↑ x ∩ Li)i∈I is again a filtered family of non-empty

patch-compact subsets of X . Since Xpatch is T2, it is sober and therefore well-filtered, so⋂
i∈I(↑x∩Li) is a non-empty patch-compact subset of X . In particular, ↑x∩

⋂
i∈I Li is

non-empty, meaning that x ∈ ↓
⋂

i∈I Li.

Let (Q, F ) be a quasi-lens. By definition, F ⊆
⋂

U∈O(X)
Q⊆U

cl(U ∩ F ). Since X is locally

compact, for every open subset U such that Q ⊆ U , there is a compact saturated subset

Q1 such that Q ⊆ int(Q1) ⊆ Q1 ⊆ U . So F ⊆
⋂

Q1 compact saturated
Q⊆int(Q1)

cl(Q1 ∩ F ). Now for

each compact saturated subset Q1 whose interior contains Q, Q1 ∩ F is patch-compact,

in fact a lens. By Fact 4.1, ↓(Q1 ∩ F ) is closed, and therefore coincides with cl(Q1 ∩ F ).

So F ⊆
⋂

Q1 compact saturated
Q⊆int(Q1)

↓(Q1∩F ) = ↓
⋂

Q1 compact saturated
Q⊆int(Q1)

(Q1∩F ), using (∗). Again

by local compactness, the latter is just ↓(Q∩F ). Letting L = Q∩F , we obtain F ⊆ ↓L,

and therefore F = ↓L. Since Q = ↑L by definition, L is a strong lens.

The rest of the Proposition is by composition with Fact 5.2.

Heckmann managed to prove that his space of continuous A-valuations PV(X) is home-

omorphic to the Plotkin powerdomain PℓV(X) when X is a continuous dcpo (Heckmann,

1997, Corollary 6.2), and when X is Hausdorff (Heckmann, 1997, Theorem 5.1). Propo-

sition 5.3 establishes this for stably compact spaces as well.

It follows from Theorem 4.5 that PV(X) too is self-dual. However, we now wish to

prove this directly. This will be Theorem 5.21 below. As we have said above, this will

give us the opportunity to introduce some tools we shall need in later sections. This will

also make apparent the role of the involution ⊥.

We first need the following machinery of so-called patch-continuous systems of in-

equalities. This is a generalization of some techniques that Jung used to show that the

probabilistic powerdomain of a stably compact space is stably compact (Jung, 2004;
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Alvarez-Manilla et al., 2004), and which we shall use again and again. There is no doubt

that one could generalize again, however we shall be content with the following.

Recall from Definition 4.6 that a map f : Y → Z is patch-continuous if and only if it

is continuous from Y patch to Zpatch.

Definition 5.4. Let T be a set, and A be a topological space. A patch-continuous in-

equality on T, A is any formula E of the form:

f( (t1), . . . , (tm)) ≤̇ g( (t′1), . . . , (t′n))

where f and g are patch-continuous maps from An to A, and t1, . . . , tm, t′1, . . . , t′n are m+

n fixed elements of T . E holds at α : T → A iff f(α(t1), . . . , α(tm)) ≤ g(α(t′1), . . . , α(t′n)),

where ≤ is the specialization quasi-ordering of A.

A patch-continuous system Σ on T, A is a (possibly infinite) set Σ of patch-continuous

inequalities on T, A. Σ holds at α : T → A iff every element of Σ holds at α.

We shall also consider patch-continuous equations of the form:

f( (t1), . . . , (tm))
.
= g( (t′1), . . . , (t′n))

where f and g are as above. Any equation a
.
= b can be rewritten as a ≤̇ b and b ≤̇ a,

so we shall freely use patch-continuous equations as well in defining patch-continuous

systems.

Proposition 5.5. Let T be a set, A a stably compact space, and Σ a patch-continuous

system on T, A. The subset [Σ] of AT of all maps α : T → A such that Σ holds at α is

patch-closed in AT .

As such, [Σ] is a stably compact subspace of AT .

Proof. For every t ∈ T , the map α ∈ AT 7→ α(t) is patch-continuous, as the con-

tinuous projection map from (AT )
patch

= (Apatch)
T

to Apatch. For every E ∈ Σ, say

f( (t1), . . . , (tm)) ≤̇ g( (t′1), . . . , (t′n)), the set [E] of all α at which E holds is the inverse

image by the patch-continuous map α ∈ AT 7→ (f(α(t1), . . . , α(tm)), g( (t′1), . . . , (t′n)))

of the graph of ≤ in Apatch. Since A is stably compact, the latter is closed in Apatch, so

[E] is patch-closed in AT . Since [Σ] =
⋂

E∈Σ[E], [Σ] is also patch-closed in AT .

It follows that [Σ] is a stably compact subspace of AT , since AT is stably compact, and

every patch-closed subspace of a stably compact space is stably compact (Jung, 2004,

Proposition 2.16).

It follows immediately:

Proposition 5.6. Let X be a topological space. The space Aval(X) of all (not necessar-

ily continuous) A-valuations on X , with the induced topology from the product topology

on AO(X), is stably compact.

Proof. First, A is stably compact, and its Nachbin pospace is {0, M, 1} with the discrete

topology and ⊑ as ordering. So any map from An to A is patch-continuous. The space

of A-valuations on X is then [Σ], where Σ consists of the following patch-continuous
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(in)equations with T = O(X), A = A. First, (∅)
.
= 0 (strictness), (X)

.
= 1 (nor-

malization), (U) ≤̇ (V ) for every pair of opens U, V such that U ⊆ V (monotonicity),

(U)⋆ (U∪V )
.
= (U)⋆ (V ) for all opens U, V of X , where ⋆ is the map (necessarily patch-

continuous) from A2 to A defined by 0⋆y = y, M⋆y = 1⋆y = 1 (property 4)—the ⋆ map

was defined in (Heckmann, 1997, Theorem 3.2)—and finally (U) ⋆̄ (U∩V )
.
= (U) ⋆̄ (V )

for all opens U, V of X , where ⋆̄ is the map (necessarily patch-continuous) from A2 to

A defined by 1 ⋆̄ y = y, M ⋆̄ y = 0 ⋆̄ y = 0 (property 5). Then apply Proposition 5.5.

We now recall a popular form of Scott’s formula.

Lemma 5.7 (Scott). Let Y be a poset in which every bounded directed family has a

least upper bound, X a continuous poset, B a basis of X , and f a monotonic map from

B to Y . Let:

r(f)(x) = sup
y∈B,y≪x

f(y)

Then r(f) is a Scott-continuous map from X to Y , and is the largest Scott-continuous

map below f on B.

Let ⋐ be the way-below relation on O(X), for any given topological space X . The

spaces X such that O(X) is a continuous dcpo are the core-compact spaces (Escardó and

Heckmann, 2002, Section 5). Every locally compact space is core-compact. Moreover, if

X is locally compact, then U ⋐ V iff U ⊆ Q ⊆ V for some compact saturated subset Q

(Gierz et al., 2003, Proposition I.1.4). We let the reader check that V1 ⋐ U , . . . , Vn ⋐ U

implies
⋃n

i=1 Vi ⋐ U , and that if X is core-compact (in particular locally compact), then

U ⋐
⋃n

i=1 Vi iff there are opens Ui ⋐ Vi, 1 ≤ i ≤ n, such that U ⊆
⋃n

i=1 Ui.

Dual to core-compactness is a property that we would like to call core-coherence: A

topological space X is core-coherent iff for all opens U, V1, V2 of X , if U ⋐ V1 and

U ⋐ V2 then U ⋐ V1 ∩ V2. Any stably compact space is clearly both core-compact and

core-coherent. This is a well-known property: this states that ⋐ is multiplicative on the

lattice O(X), see (Abramsky and Jung, 1994, Definition 7.2.18) or (Gierz et al., 2003,

Proposition I.4.7). Then we have the dual property that, if X is core-coherent, then

V ⋐
⋂n

i=1 Ui (n ≥ 1) iff there are opens Vi ⋐ Ui, 1 ≤ i ≤ n, such that V ⊆
⋂n

i=1 Vi.

The point is preservation of the way-below relation ⋐, and a reflection property, sat-

isfied by various set operations.

Definition 5.8 (Preserving and Reflecting ≪). For any binary set operation ◦ on

a poset Z, say that ◦ preserves ≪ iff v1 ≪ u1 and v2 ≪ u2 imply v1 ◦ v2 ≪ u1 ◦ u2 for

all v1, u1, v2, u2 in Z; ◦ reflects ≪ iff for any v, v1, v2 in Z such that v ≪ v1 ◦ v2, there

are u1 and u2 in Z such that v ≤ u1 ◦ u2, u1 ≪ v1, and u2 ≪ v2.

The remarks above imply that, with Z = O(X), union ∪ preserves ⋐ in core-compact

spaces, and intersection ∩ preserves ⋐ in core-coherent spaces. Union ∪ reflects ⋐ in

core-compact spaces, and ∩ reflects ⋐ in core-coherent spaces. It is an easy exercise to

show that whenever Z is a continuous dcpo, every Scott-continuous operation ◦ on Z

reflects ≪.

Given that ◦ preserves and reflects ⋐, one sees that any expression of the form
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supV ⋐V1◦V2
f(V ) can be rewritten as supU1⋐V1

U2⋐V2

f(U1 ◦ U2), for any monotonic map f

from O(X) to some ordered space in which these sups make sense. We shall use this in

the proof of Lemma 5.9 below, and in several other arguments. Indeed, since ◦ reflects ⋐,

supV ⋐V1◦V2
f(V ) ≤ sup V,U1,U2

V ⊆U1◦U2

V1⋐U1,V2⋐U2

f(V ) ≤ sup U1,U2

V1⋐U1,V2⋐U2

f(U1 ◦ U2). And conversely,

since ◦ preserves ⋐, supU1⋐V1

U2⋐V2

f(U1◦U2) ≤ sup U1,U2

U1◦U2⋐V1◦V2

f(U1◦U2) ≤ supV ⋐V1◦V2
f(V ).

Lemma 5.9. Let X be a stably compact space. For every A-valuation α on X , r(α) is

a continuous A-valuation on X .

Proof. By Lemma 5.7, r(α) is monotone and continuous. By definition, r(α)(U) =

supV ⋐U α(V ). That r(α) is strict is clear. Since X is compact, X ⋐ X , so r(α)(X) = 1,

hence r(α) is normalized. If r(α)(U) = 0, then α(W1) = 0 for every W1 ⋐ U , so:

r(α)(U ∪ V ) = sup
W⋐U∪V

α(W )

= sup
W1⋐U,W2⋐V,W⊆W1∪W2

α(W )

since ∪ preserves and reflects ⋐ (core-compactness)

= sup
W1⋐U,W2⋐V

α(W1 ∪ W2) since α is monotone

= sup
W1⋐U,W2⋐V

α(W2) since α(W1) = 0 for every W1 ⋐ U,

= sup
W2⋐V

α(W2) = r(α)(V )

Similarly, if r(α)(U) = 1, then r(α)(U ∩ V ) = r(V ), using core-coherence instead of

core-compactness, i.e., the fact that ∩ preserves and reflects ⋐.

In general, any property P on maps f : O(X) → A that can be expressed by only using

operations that preserve and reflect ⋐ in O(X), application of f to opens of X , and

Scott-continuous maps in A, also holds of r(f). Lemma 5.9 is the particular case where

P is the property of being an A-valuation.

A retract of a topological space Y is a topological space Z such that there are two

continuous maps s : Z → Y (the section) and r : Y → Z (the retraction) such that

r(s(z)) = z for all z ∈ Z.

Scott’s formula yields a retraction almost for free. Recall that the topology of pointwise

convergence on any space Z of functions from X to Y is induced from the product

topology, and has subbasic open sets [x ∈ V ] = {f ∈ Z | f(x) ∈ V }, x ∈ X , V open in

Y . We write [x ∈ V ]Z in case the ambient space Z is ambiguous.

Lemma 5.10. Let Y be a poset in which every bounded directed family has a least

upper bound, X a continuous poset, B a basis of X , and define r as in Lemma 5.7.

For every set Z of monotonic maps from X to Y such that r(Z) ⊆ Z, r defines a

retraction from Z onto its image r(Z), where Z and r(Z) are equipped with the topology

of pointwise convergence. The inclusion s : r(Z) ⊆ Z is the associated section.

Proof. First, r is continuous: for any subbasic open set [x ∈ V ]
r(Z), its inverse image
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by r is {f ∈ Z | r(f)(x) ∈ V } = {f ∈ Z | ∃y ∈ B, y ≪ x, f(y) ∈ V } =
⋃

y∈B,y≪x[y ∈

f−1(V )]Z . Second, s is continuous, because the topology of pointwise convergence on

r(Z) ⊆ Z is induced by that on Z. Finally, we claim that r(s(f)) = f for all f ∈ r(Z). We

must show that r(s(f))(x) = f(x) for all x ∈ X . Since f ∈ r(Z), f is Scott-continuous.

Then r(s(f))(x) = supy∈B,y≪x f(y) = f(supy∈B,y≪x y) = f(x).

Lemma 5.11. Let X be stably compact. The map r is continuous from Aval(X) to

PV(X). It is a retraction, with the canonical inclusion s as associated section.

Proof. Recall that Aval(X) is the space of all A-valuations on X , and that the Vietoris

topology is the topology of pointwise convergence. Apply Lemma 5.10 to Z = Aval(X),

where r(Z) ⊆ Z follows from Lemma 5.9. It remains to show that r(Z) coincides with

PV(X) as a set. It is enough to observe that every continuous A-valuation α coincides

with r(α), hence is in r(Z).

We now use the following result, which we shall call Lawson’s Lemma (Lawson, 1987,

Proposition, bottom of p.153, and subsequent discussion), see also (Jung, 2004, Propo-

sition 2.17).

Lemma 5.12 (Lawson). Any topological space that arises as a retract of a stably

compact space is itself stably compact.

In fact, taking retracts preserves any property among sobriety, local compactness, coher-

ence, compactness.

By Proposition 5.6, the space of all A-valuations is stably compact. By Lemma 5.11,

PV(X) is a retract of it, as soon as X is stably compact. Using Lawson’s Lemma 5.12, it

follows immediately:

Proposition 5.13. If X is stably compact, then so are PV(X) and P ′
V(X).

Notice that this was proved exactly as Jung proved that the probabilistic powerdomain

of a stably compact space is stably compact (Jung, 2004; Alvarez-Manilla et al., 2004).

Recall that Mislove proved that Pℓ(X) is stably compact (Mislove, 1998, Corollary 4.48),

however this requires not just X to be stably compact, but also to be a continuous dcpo.

We dispensed with the latter assumption in Proposition 5.13. One can reprove Mislove’s

theorem by noting that, when X is a continuous dcpo, PV(X) is isomorphic to Pℓ(X)

(Heckmann, 1997, Corollary 6.2).

We now come to actual duality on PV(X). Write
d

, ⊓ for infs in A.

Definition 5.14. Let X be a topological space. Given any continuous A-valuation α,

let α†(Q) be defined, for every compact saturated subset Q of X , by:

α†(Q) =
l

U∈O(X)
Q⊆U

α(U).

This definition is inspired from a similar definition for games, see Section 6; in the case

of valuations, this was introduced in (Tix, 1995).
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Lemma 5.15. Let X be stably compact. For every compact saturated subset Q of X ,

�Q = {α ∈ PV(X) | α†(Q) = 1} and �Q = {α ∈ PV(X) | α†(Q) 6= 0} are compact

saturated in PV(X).

Proof. For every a ∈ A, consider the set of all (not necessarily continuous) A-valuations

α such that a ⊑ α(U) for all opens U of X containing Q. This is the subset [ΣQ⊒a],

where ΣQ⊒a is the system of patch-continuous equations obtained by adding the patch-

continuous inequalities a ≤̇ (U), for each open U of X containing Q, to the system Σ

used in the proof of Proposition 5.6. By Proposition 5.5, [ΣQ⊒a] is a stably compact

space with the topology induced by the product topology on AO(X).

Now let 〈Q ⊒ a〉 denote the space of all continuous A-valuations α on X such that

a ⊑ α(U) for all opens U of X containing Q. We equip it with the induced topology

from PV(X); note that this is another Vietoris topology, generated from subsets that one

may again write 2U and 3U for each open U of X , respectively defined as {α ∈ 〈Q ⊒

a〉 | α(U) = 1} and as {α ∈ 〈Q ⊒ a〉 | α(U) 6= 0}. By Lemma 5.10, and following the

same argument as in Lemma 5.11, r is a retraction of [ΣQ⊒a] onto 〈Q ⊒ a〉, with the

canonical inclusion s as associated section. We have to check that r maps each element

α of [ΣQ⊒a] to one in 〈Q ⊒ a〉. Indeed, let U be an arbitrary open containing Q. As

in any locally compact space, there is a compact saturated subset Q′ of X such that

Q ⊆ int(Q′) ⊆ Q′ ⊆ U . Then r(α)(U) = supV ⋐U α(V ) is greater than or equal to

α(int(Q′)), which is greater than or equal to a, by assumption.

By Lawson’s Lemma 5.12, 〈Q ⊒ a〉 is a stably compact space. It follows that, qua

subset of PV(X), 〈Q ⊒ a〉 is compact. It is also clearly saturated. We conclude that �Q,

which equals 〈Q ⊒ 1〉, and �Q, which equals 〈Q ⊒ M〉, are compact saturated.

We shall use similar compactness arguments, using retracts of spaces defined by systems

of patch-continuous inequalities, for valuations, games and previsions.

In Proposition 5.18 below, we show a converse to Lemma 5.15: every compact saturated

subset of PV(X) can be obtained as an intersection of finite unions of subsets of the form

�Q or �Q. We require yet another pair of lemmas. Let [Z → Y ] denote the space of

continuous maps from Z to the dcpo Y , with the Scott topology of the pointwise ordering.

Let [Z → Y ]p be the same space, but with the topology induced from the product

topology on Y Z . (The subscript p is for “product”, or for “pointwise convergence”.)

Lemma 5.16. Let A be a bc-domain with bottom element ⊥, and Z be a continuous

poset, e.g., Z = O(X) for some locally compact space X . The Scott topology coincides

with the product topology, i.e., [Z → A] = [Z → A]p, and [Z → A] is a bc-domain.

Proof. First, every subbasic open {f ∈ [Z → A] | f(z) ∈ V } of the product topology

(z ∈ Z, V open in A) is clearly Scott-open. So the Scott topology is finer than the product

topology.

Conversely, call a step any map of the form a ց b, where a ց b maps each z ∈ Z

to b if a ≪ z, to ⊥ otherwise. Call step function any map that is the (pointwise) least

upper bound of finitely many steps. Under the conditions of the Lemma, [Z → A] is a

bc-domain with a basis of step functions; this is almost standard: the case where Z is

a continuous dcpo is dealt with in (Gierz et al., 2003, Exercise II-2.31), but continuous
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posets are dealt with in exactly the same way. In fact, one shows that every element f of

[Z → A] is the least upper bound of a directed family of step functions supn
i=1(xi ց yi)

satisfying the stronger condition that yi ≪ f(xi), 1 ≤ i ≤ n. We claim that this entails

that every Scott-open U is open in the product topology. Indeed, for every f ∈ U , one can

find a step function gf = supnf

i=1(xf
i ց yf

i ) such that yf
i ≪ f(xf

i ) for every i, 1 ≤ i ≤ nf ,

and such that gf is in U . We show that U =
⋃

f∈U

⋂nf

i=1[xf
i 7→ ↑↑yf

i ], where [x 7→ V ]

denotes the subbasic open of the product topology, consisting of all maps sending x to

an element of the open V .

For every f ∈ U , f ∈
⋂nf

i=1[xf
i 7→ ↑↑yf

i ], since yf
i ≪ f(xf

i ) for every i, 1 ≤ i ≤ nf .

Conversely, for every g that is in
⋂nf

i=1[xf
i 7→ ↑↑yf

i ] for some f ∈ U , the fact that yf
i ≪

g(xf
i ) for each i, 1 ≤ i ≤ nf , entails gf ≪ g (Gierz et al., 2003, Exercise II-2.31 (ii)). Since

gf ∈ U , g ∈ U , and we conclude. That [Z → A] is a bc-domain is clear: it is a continuous

dcpo with basis given by step functions, and it is easy to see that it is bounded-complete,

where existing sups are computed pointwise.

Lemma 5.17. Let A be a continuous complete lattice, and X a locally compact space.

Let 〈Q ≥ a〉∗ be the set of elements α of [O(X) → A] such that a ⊑ α(U) for all opens

U containing Q. Then every compact saturated subset of [O(X) → A] is an intersection

of finite unions of sets of the form 〈Q ≥ a〉∗, Q compact saturated in X , a ∈ A.

Proof. Let α be any element of [O(X) → A]. For each fixed compact saturated subset

Q of X , define α† as the inf of all α(U), where U ranges over the opens containing Q.

This extends the above definition of α†.

Note that α ≤ β iff α† ≤ β†. The only if direction is clear. In the if direction, for

every open U , U is the sup of the directed family of all opens V ⋐ U . Since X is locally

compact, if V ⋐ U then there is a compact saturated subset Q such that V ⊆ Q ⊆ U .

Then, α(V ) ≤ α†(Q) by the definition of α†, that α†(Q) ≤ β†(Q) by assumption, and

β†(Q) ≤ β(U) by definition. Since α(U) = supV ⋐U α(V ), α(U) ≤ β(U).

It follows that ↑α =
⋂

Q〈Q ≥ α†(Q)〉∗, where Q ranges over all compact satu-

rated subsets of X . Then, for every finite subset E = {α1, . . . , αn} of [O(X) → A],

↑ E =
⋃n

i=1

⋂
Q〈Q ≥ α†

i (Q)〉∗ =
⋂

Q1,...,Qn
(〈Q1 ≥ α†

1(Q1)〉∗ ∪ . . . ∪ 〈Qn ≥ α†
n(Qn)〉∗).

Since X is locally compact, Z = O(X) is a continuous dcpo, so [O(X) → A] is a con-

tinuous bc-domain. In particular, any compact saturated subset Q of [O(X) → A] is a

filtered intersection of subsets of the form ↑ E , E finite, hence is an intersection of finite

intersections of subsets of the form 〈Q ≥ a〉∗.

Proposition 5.18. Let X be stably compact. The compact saturated subsets of PV(X)

are exactly the intersections of finite unions of sets of the form �Q or �Q, Q compact

saturated in X . In other words, the topology of PV(X)d is generated by complements of

sets of the form �Q or �Q, Q compact saturated in X .

Proof. One direction is Lemma 5.15. Conversely, let Q be a compact saturated subset

of PV(X). As a subset of [O(X) → A]p, Q is again compact, since the topology of

PV(X) is induced from the product topology. Write ↑Q the upward-closure of Q in

[O(X) → A]p. This is compact saturated in [O(X) → A]p. Now A is a bc-domain

with a least element, and X is locally compact, so [O(X) → A]p = [O(X) → A] by
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Lemma 5.16. So ↑Q is compact saturated in [O(X) → A]. By Lemma 5.17, ↑Q is an

intersection of finite unions of sets of the form 〈Q ≥ a〉∗, Q compact saturated in X ,

a ∈ A. Heckmann observed that the specialization ordering of PV(X) is the pointwise

ordering ⊑A (Heckmann, 1997, Section 3.3). This is the same specialization ordering as

in [O(X) → A]. Since Q is saturated in PV(X), Q is the intersection of ↑Q with PV(X).

So Q is an intersection of finite unions of sets of the form 〈Q ≥ a〉∗∩PV(X). We conclude

since the latter equals �Q when a = 1, �Q when a = M, and the whole of PV(X) (i.e.,

�X) when a = 0.

The following is directly defined from a definition we shall see later on games (Defini-

tion 6.9), much as the definition of α† was already (Definition 5.14).

Definition 5.19. Let X be a stably compact space. For every continuous A-valuation

α on X , let α⊥ be the map from O(Xd) to A defined by:

α⊥(X \ Q) = 1 − α†(Q),

where the map 1 − on A is defined by 1 − 1 = 0, 1 − 0 = 1, 1 − M = M.

Lemma 5.20. Let X be stably compact. For every continuous A-valuation α on X , α⊥

is a continuous A-valuation on Xd, and α⊥⊥ = α.

Proof. Strictness: α⊥(∅) = 1 − α†(X) = 1 − 1 = 0. Normalization: α⊥(Xd) = 1 −

α†(∅) = 1 − 0 = 1. Monotonicity: if X \ Q ⊆ X \ Q′, then Q′ ⊆ Q, so that α†(Q′) =d
U⊇Q′ α(U) ⊑

d
U⊇Q α(U) = α†(Q), hence α⊥(X \ Q) ⊑ α⊥(X \ Q′). (Subscripts such

as U ⊇ Q′ abbreviate an enumeration of all open subsets U of X such that U contains

Q′.) Continuity: let (X \ Qi)i∈I be a directed family of opens in Xd, i.e., (Qi)i∈I is a

filtered family of compact saturated subsets of X . By well-filteredness, for any open U

of X ,
⋂

i∈I Qi ⊆ U iff Qi ⊆ U for some i ∈ I. So α†(
⋂

i∈I Qi) =
d

U⊇
T

i∈I Qi
α(U) =

d
U such that Qi⊆U for some i∈I α(U) =

d
i∈I

d
U⊇Qi

α(U) =
d

i∈I α†(Qi). It follows that

α⊥(
⋃

i∈I(X \ Qi)) = 1 −
d

i∈I α†(Qi) =
⊔

i∈I α⊥(X \ Qi).

Property 4: if α⊥(X \ Q) = 0, then α(V ) = 1 for all opens V that contain Q. For

any open U containing Q ∩ Q′, there are two opens V , V ′ such that Q ⊆ V , Q′ ⊆ V ′,

and V ∩ V ′ ⊆ U . This property is well-known to hold on stably compact spaces, see e.g.

(Keimel and Lawson, 2005, Lemma 8.1), where spaces satisfying this are called weakly

Hausdorff . Then, for any compact saturated subset Q′, α†(Q ∩ Q′) =
d

U⊇Q∩Q′ α(U) =d
V ⊇Q,V ′⊇Q′,U⊇V ∩V ′ α(U). Since α(V ) = 1 for every V ⊇ Q, α(V ∩ V ′) = α(V ′), so

α†(Q ∩ Q′) is larger than or equal to
d

V ′⊇Q′ α(V ′) = α†(Q′). It follows that α⊥((X \

Q) ∪ (X \ Q′)) = α⊥(X \ Q′).

Property 5 is proved similarly, using the fact that for any open U containing Q ∪ Q′,

there are two opens V , V ′ such that Q ⊆ V , Q′ ⊆ V ′, and V ∪ V ′ ⊆ U . (Take V = V ′ =

U .)

Finally, we show that α⊥⊥ = α. Note that α⊥ is a continuous A-valuation on Xd, and

that for every continuous A-valuation β on Xd, β⊥(U) is defined as 1−
d

X\Q⊇X\U β(X \

Q), i.e., β⊥(U) =
⊔

Q⊆U (1 − β(X \ Q)). So, for every open U of X , α⊥⊥(U) equals⊔
Q⊆U

d
V ⊇Q α(V ). In particular, the inequality α⊥⊥(U) ⊑ α(U) is clear (take V = U in
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the inf). Conversely, since α is continuous, α(U) =
⊔

W⋐U α(W ). For each open W ⋐ U ,

there is a compact saturated Q such that W ⊆ Q ⊆ U . Then α(W ) ⊑
d

V ⊇Q α(V ), so

α(W ) ⊑ α⊥⊥(U), and we conclude.

We call α⊥ the dual of α. This is the third time we see de Groot duality acting on models

of choice, and perhaps the first non-trivial instance.

For short, say that ⊥ is involutive whenever ⊥⊥ is the identity map.

Theorem 5.21 (Duality, Erratic Case). Let X be a stably compact space. Then ⊥

defines an involutive homeomorphism from PV(X)d to PV(Xd).

Proof. The inverse image by ⊥ of the subbasic open 2(X \ Q) (Q compact saturated

in X) is the complement of �Q, and conversely the image of �Q by ⊥ is 2(X \ Q).

Similarly, the inverse image of 3(X \ Q) is the complement of �Q, and the image of

�Q is 3(X \ Q). By Proposition 5.18, ⊥ is therefore continuous and open. It is also

involutive by Lemma 5.20, hence a homeomorphism.

So the PV construction is self-dual. Because of the homeomorphism of Fact 5.2, all

this transports to spaces of quasi-lenses. We make this explicit: duality ⊥ operates on

quasi-lenses by exchanging demons (the Q part) and angels (the F part).

Proposition 5.22 (Exchanging Angels and Demons). Let X be a stably compact

space. For any quasi-lens (Q, F ) on X , let its dual (Q, F )⊥ be (F, Q). This is a quasi-lens

on Xd, we have (Q, F )
⊥⊥

= (Q, F ), and (Q, F )
⊥

= (Q, F )
∗⊥◦

, where the ⊥ operation

on the right-hand side is the one of Lemma 5.20, and ∗ and ◦ are defined in Fact 5.2.

Proof. We do this in reverse, and check that (Q, F )
∗⊥◦

is indeed equal to (F, Q). From

this all other assertions follow immediately. Let α = (Q, F )
∗
. We first compute α†. For

every compact saturated subset Q1 of X , α†(Q1) = 1 if and only if for every open U

containing Q1, α(U) = 1, iff every open U that contains Q1 also contains Q. Since Q1 is

saturated, this is equivalent to Q ⊆ Q1. Next, α†(Q1) = 0 if and only if some open U that

contains Q1 fails to intersect F , iff the complement V of F contains Q1, iff Q1 ∩ F = ∅.

So α† is defined just as α is: it maps Q1 to 1 if Q ⊆ Q1, to 0 if Q1 ∩ F = ∅, and to M

otherwise.

For clarity, we now use primes in denoting subsets of Xd. E.g., while the opens of Xd

are just cocompacts of the form X \ Q1, Q1 compact saturated in X , denote them by

symbols such as U ′, V ′.

The above computation of α† entails that β = α⊥ maps each open U ′ of Xd to 1 if

F ⊆ U ′, to 0 if U ′ ∩ Q = ∅, and to M otherwise. Let (Q′, F ′) = β◦. Note that F is

compact saturated in Xd. Since F is saturated, it is the intersection of all opens U ′ that

contain it, whence Q′ = F . Note also that Q is closed in Xd, hence its complement V ′ is

open in Xd. The union of all opens U ′ of Xd such that U ′ ∩ Q = ∅ is just V ′. But then

F ′ is the complement of V ′ by definition of ◦, so Q = F ′.

Fact 5.2 then entails the following consequence of Theorem 5.21:

Corollary 5.23. Let X be a stably compact space. Then ⊥ defines an involutive home-

omorphism from P ′
V(X)d to P ′

V(Xd).
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We draw the attention of the reader to the fact that the definition of duality on spaces

of quasi-lenses is far from trivial. Don’t be fooled by the apparent simplicity of the formula

(Q, F )
⊥

= (F, Q). If we had to check directly that (F, Q) is indeed a quasi-lens on Xd,

the second condition to check would be that F is the upward-closure in the specialization

ordering of Xd, namely the downward-closure of L = F ∩ Q. The only thing we know

is that (third condition), for any open U containing Q, F is contained in cl(U ∩ F ).

Stable compactness is needed to go from the weak latter condition to the strong, former

condition.

Now, a consequence of this is any quasi-lens (Q, F ) is such that L = Q∩F is non-empty,

Q = ↑L, and F = ↓L. Since F is closed, and ↓L ⊆ cl(L), we also obtain F = cl(L).

As we have already said, such quasi-lenses are in one-to-one correspondence with lenses:

map (Q, F ) to L in one direction, L to (↑L, cl(L)) in the other direction. Subbasic open

sets 2U , 3U are again preserved in every direction. Then duality ⊥ is transported onto

the space PℓV(X) of lenses. However, the resulting notion maps any lens L first to its

associated quasi-lens (↑L, cl(L)), then swaps the two components, and takes back the

union. So duality is just the identity map in this case, blurring the swap between angels

and demons:

Corollary 5.24. Let X be a stably compact space. Then PℓV(X)d = PℓV(Xd).

6. The Probabilistic Powerdomain; Mixed Choice I: Games

The notion of continuous valuation is a natural alternative to the more well-known notion

of measure (Jones, 1990). Instead of defining it directly, we define the more general

notion of game (Goubault-Larrecq, 2007a). This is modeled after what economists call

cooperative games with transferable utility (Gilboa and Schmeidler, 1994), and which

take their roots in Gustave Choquet’s work on capacities (Choquet, 54). The study of

capacities on non-T2 spaces was initiated by Norberg and Vervaat (Norberg and Vervaat,

1997).

Taking the naming conventions of (Goubault-Larrecq, 2007a), and following (Gilboa

and Schmeidler, 1994), a game is a strict monotone map ν from O(X) to R+; strict-

ness means, as for A-valuations, that ν(∅) = 0; monotonicity means that ν(U) ≤ ν(V )

whenever U ⊆ V .

Say that the game ν is modular (resp., convex , resp. concave) if and only if ν(U ∪V )+

ν(U ∩ V ) = ν(U) + ν(V ) (resp. ≥, resp. ≤) for all opens U, V . The terms supermodular

and submodular are sometimes used in lieu of convex, concave. A modular game is called

a valuation.

A game ν is totally convex iff:

ν

(
n⋃

i=1

Ui

)
≥

∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν

(⋂

i∈I

Ui

)
(1)

for every finite family (Ui)
n
i=1, n ≥ 1, of opens of X . A credibility is a totally convex game.

We called credibilities belief functions in (Goubault-Larrecq, 2007a), following common

usage for credibilities on discrete spaces. The standard name for “totally convex” is
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“totally monotonic” (Gilboa and Schmeidler, 1994). However, total convexity has a dual

that is best named total concavity: ν is totally concave iff (1) holds with ≥ replaced

by ≤, and the roles of unions and intersections are swapped. A totally concave game is

a plausibility (Goubault-Larrecq, 2007a). Note that, if ν is a valuation, then (1) holds

with = instead of ≥. This equation is the well-known inclusion-exclusion principle of

probability theory.

For every non-empty subset A of X , the unanimity game uA is defined by: uA(U) = 1

if A ⊆ U , 0 otherwise. We have already introduced this notation in Section 5. Every

unanimity game is a credibility (Gilboa and Schmeidler, 1994; Goubault-Larrecq, 2007a).

We don’t wish to disrupt the flow of exposition, and will prove this later (Lemma 6.15).

A special case of a unanimity game uA is when A is a one-element set {x}. Then u{x} is

the Dirac valuation δx at x. Dually, we let the example game eA be defined by: eA(U) = 1

if A ∩ U 6= ∅, 0 otherwise. Again, we have already introduced this notation in Section 5.

Every example game is a plausibility, as we shall see in Lemma 6.22.

Every totally convex game is convex, but the converse fails. E.g., take X = {1, 2, 3}

with the discrete topology, u{1,2} is a credibility but not a valuation, and 1
2 (u{1,2} +

u{1,3} + u{2,3} − u{1,2,3}) is a convex game but not a credibility. The latter indeed takes

all sets of cardinality 1 or less to 0, all two-element sets to 1/2, and the whole set to 1,

from which convexity follows by case analysis. Total convexity fails: take U1 = {2, 3},

U2 = {1, 3}, U3 = {1, 2}, then the left-hand side of (1) is 1, while the right-hand side

is 3 × 1/2 (the sum of the measures of U1, U2, U3; the other terms contribute zero).

Similarly, every totally concave game is concave, but the converse fails.

A probability valuation ν (resp., subprobability valuation) is a valuation that is normal-

ized (resp., subnormalized), i.e., that ν(X) = 1 (≤ 1). We shall say probability instead of

probability valuation, for short.

A game ν is continuous iff ν(
⋃

i∈I Ui) = supi∈I ν(Ui) for every directed family (Ui)i∈I

of opens.

Our main focus will be on normalized games. Subnormalized games are not that dif-

ferent: any subnormalized game ν on X extends uniquely to a normalized game ν⊥ on

X⊥ by ν⊥(U) = ν(U) for all opens U of X , and ν⊥(X⊥) = 1. Conversely, any normalized

game on X⊥ restricts to a unique subnormalized game on X . Moreover, this isomorphism

preserves all the properties among continuity, (total) convexity, (total) concavity. This

allows us to concentrate on normalized games; corresponding results on subnormalized

games easily follow.

Continuous valuations are used to give meaning to probabilistic choice in program-

ming languages (Jones, 1990). Continuous valuations extend to measures on the Borel

σ-algebra of the topology, under mild assumptions (Keimel and Lawson, 2005), showing

that the two notions are close. In fact, Theorem 8.3 of op.cit. implies that any continuous

valuation ν on a stably compact space X extends to a measure on the Borel σ-algebra,

not just of X , but even of Xpatch. (Furthermore, this measure is regular, and is unique

among the regular measures extending ν to the Borel σ-algebra of Xpatch.) Keimel and

Lawson consider extended valuations, i.e., maps defined as our valuations above, but

with target space R+ instead of R+, where R+ is R+ with an added top element +∞,

with its Scott topology. Their theorem 8.3 applies to the more general class of locally
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finite extended valuations. Our valuations ν are always bounded (by ν(X)). Since our

interest lies in normalized games, and in fact our duality ⊥ to come is only defined on

normalized games, we won’t consider extended valuations.

There is again a topological way and a domain-theoretic way of defining the various

spaces of games we shall be interested in. In the domain-theoretic case, we order games by

the pointwise ordering: ν ≤ ν′ iff ν(U) ≤ ν′(U) for every open subset U of X . Let J(X)

be the space of all continuous games on X , V(X) the space of continuous valuations on

X , Cd(X) that of continuous credibilities on X , Pb(X) that of continuous plausibilities

on X ,
`

J(X) the space of continuous convex games on X , and
a

J(X) the space of

continuous concave games on X . These are equipped with their Scott topologies. We also

add subscripts 1, resp. ≤ 1, to denote their subsets of normalized, resp. subnormalized

games, so that, for example, V1(X) is the space of continuous probabilities on X .

The topological way is to equip each of these spaces Y with their weak topologies.

The weak topology on Y is by definition the induced topology from the inclusion of Y

in the product R+
σ
O(X)

, and is generated by the subbasic open sets [U > r]Y = {ν ∈

Y | ν(U) > r}, U open in X , r ∈ R. When Y is clear from the context, we shall just

write [U > r] for [U > r]Y . Jung calls the weak topology, defined this way, the product

topology on V1(X) and V≤1(X) (Jung, 2004; Alvarez-Manilla et al., 2004), reserving

the name “weak topology” for another definition (see also Definition 7.1). However, the

two topologies always coincide.

We append the two letters “wk” in subscript to the various spaces of games above to

indicate that we consider them with their weak topology. E.g., J1 wk(X) is the space of all

continuous normalized games on X with its weak topology, and V1 wk(X) and V≤1 wk(X)

are the spaces of continuous probabilities, resp. of continuous subprobabilities, with their

weak topologies.

The attentive reader will have noticed that the weak topologies are nothing else than

topologies of pointwise convergence, again.

It is well-known that, if X is a continuous dcpo, then so is V≤1(X) (Jones, 1990).

A basis is given by the simple (subnormalized) valuations
∑n

i=1 aiδxi
, a1, . . . , an ∈ R+

(and
∑n

i=1 ai ≤ 1), x1, . . . , xn ∈ X . If X is a continuous pointed dcpo, then so is V1(X)

(Edalat, 1995, Section 3), with a basis of simple normalized valuations. This is an easy

consequence of Jones’ result, by Edalat’s trick : observe that X = Y⊥, where Y is the dcpo

obtained by removing the least element ⊥ from X , and Y is again a continuous dcpo

with way-below relation obtained by restriction from that of X , so that Jones’ result

applies to V≤1(Y ) ∼= V1(X).

The Scott topology is in general finer than the weak topology on any space of games.

However, the two topologies agree on V≤1(X), i.e., V≤1(X) = V≤1 wk(X), when X is

a continuous dcpo (Tix, 1995, Satz 4.10). By Edalat’s trick, they also agree on V1(X),

i.e., V1(X) = V1 wk(X), when X is a continuous pointed dcpo.

Jung has shown (Jung, 2004, Theorem 3.2) that whenever X is stably compact, then so

are V≤1 wk(X) and V1 wk(X) in their weak topologies. The technique of patch-continuous

inequalities of Section 5 was obtained by taking a slightly more abstract view of Jung’s

technique. It is only right that it applies to sundry spaces of games.



De Groot Duality and Models of Choice: Angels, Demons, and Nature 31

Proposition 6.1. Let X be a topological space, and P be any conjunction of properties

of games among “convex”, “concave”, “totally convex”, “totally concave”, “modular”,

“normalized”.

The space JP (X) of all (not necessarily continuous) subnormalized games on X satis-

fying property P , with the induced topology from the product topology on [0, 1]
O(X)
σ , is

stably compact.

Proof. This is as in Proposition 5.6, with T = O(X), A = R+. Note that R+ is stably

compact with its Scott topology. In fact, R+ is a continuous complete lattice, its Scott-

open subsets are intervals of the form (r, +∞], r ∈ R (when r < 0, we take (r, +∞] to

denote the whole space), its cocompact subsets (which coincide with the opens of the

upper topology) are R+ itself, plus all intervals of the form [0, r) where r ∈ R+.

Note also that + is patch-continuous from R+×R+ → R+, where we define (+∞)+y =

x + (+∞) = +∞. In fact, + is continuous for both the Scott and the upper topologies.

For every r ∈ R, (+)−1(r, +∞] =
⋃

s,t∈R

s+t>r
(s, +∞] × (t, +∞], and for every r ∈ R+,

(+)−1[0, r) =
⋃

s,t∈R+

s+t<r

[0, s) × [0, t).

Then JP (X) is definable as some [ΣP ] in each case. ΣP contains the (in)equations

(∅)
.
= 0 (strictness), (U) ≤̇ (V ) for all opens U and V with U ⊆ V (monotonicity),

and (X) ≤̇ 1 (subnormalized). If convexity is required in P , then we add the inequalities

(U) + (V ) ≤̇ (U ∩ V ) + (U ∪ V ) to ΣP for all opens U , V . The latter in particular is

the reason why we did not choose A = [0, 1]σ, since addition can lead out of [0, 1].

The various minus signs in the definition of total convexity seem to pose a diffi-

culty. However, by moving negated terms to the other side of the inequality, we ob-

tain an equivalent formulation using addition only. Namely, if total convexity is re-

quired in P , then we add the inequalities
∑

I⊆{1,...,n},I 6=∅,
|I| odd

(⋂
i∈I Ui

)
≤̇ (

⋃n
i=1 Ui) +

∑
I⊆{1,...,n},I 6=∅,

|I| even

(⋂
i∈I Ui

)
to ΣP , for all n ≥ 1 and all opens U1, . . . , Un. We leave the

other properties as an exercise.

The previous proof in fact also shows that the corresponding spaces of extended games,

i.e., those that may take the value +∞, is also stably compact.

Recall Scott’s formula from Lemma 5.7: on games, r(ν)(U) = supV ⋐U ν(V ).

Lemma 6.2. Under the assumptions of Proposition 6.1, and provided X is stably com-

pact, for any subnormalized game ν on X satisfying property P , r(ν) is a continuous

subnormalized game on X satisfying property P .

Proof. First, r(ν) is clearly a continuous game, and is subnormalized: r(ν)(X) =
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supV ⋐X ν(V ) ≤ 1. If ν is convex, then:

r(ν)(U1 ∪ U2) + r(ν)(U1 ∩ U2) = sup
V ⋐U1∪U2

ν(V ) + sup
V ⋐U1∩U2

ν(V )

= sup
V1⋐U1

V2⋐U2

ν(V1 ∪ V2) + sup
V1⋐U1

V2⋐U2

ν(V1 ∩ V2)

since ∪ (core-compactness) and ∩ (core-coherence)

preserve and reflect ⋐

= sup
V1⋐U1

V2⋐U2

(ν(V1 ∪ V2) + ν(V1 ∩ V2))

since + is Scott-continuous on R+
σ . Note that the sups are directed, since O(X), hence

O(X) ×O(X), is a continuous dcpo. Since ν is convex, this is greater than or equal to:

sup
V1⋐U1

V2⋐U2

(ν(V1) + ν(V2)) = sup
V1⋐U1

V2⋐U2

ν(V1) + sup
V1⋐U1

V2⋐U2

ν(V2)

= sup
V1⋐U1

ν(V1) + sup
V2⋐U2

ν(V2) = r(ν)(U1) + r(ν)(U2)

So r(ν) is convex, too. The proof that r(ν) is concave, resp. modular, whenever ν is, is

similar.

If ν is totally convex, we show that r(ν) is totally convex as above. Remember that

total convexity (for r(ν)) has the following equivalent formulation with no minus sign, a

fact that we have already used in Proposition 6.1:

r(ν)

(
n⋃

i=1

Ui

)
+

∑

I⊆{1,...,n},I 6=∅,
|I| even

r(ν)

(⋂

i∈I

Ui

)
≥

∑

I⊆{1,...,n},I 6=∅,
|I| odd

r(ν)

(⋂

i∈I

Ui

)

This is proved as convexity above, and is left as an exercise. Similarly, if ν is totally

concave, then so is r(ν).

Finally, if ν is normalized, then note that X , as an open set, is such that X ⋐ X , as

X is compact. So r(ν)(X) = supV ⋐X ν(V ) ≥ ν(X) = 1, hence r(ν) is normalized.

Lemma 6.3. Under the assumptions of Proposition 6.1, and provided X is stably com-

pact, r is continuous from JP (X) to the space JP
wk(X) of continuous subnormalized games

on X satisfying P , with the weak topology, and forms a retraction with the canonical

inclusion s as associated section.

Proof. Use Lemma 5.10, with Z = JP (X), Y = R+. One has r(Z) ⊆ Z by Lemma 6.2,

and r(Z), as a set, coincides with JP (X).

Using Lawson’s Lemma 5.12, it follows:

Proposition 6.4. If X is stably compact, then so are the spaces J≤1 wk(X),
`

J≤1 wk(X),a
J≤1 wk(X), Cd≤1 wk(X), Pb≤1 wk(X), V≤1 wk(X), as well as J1 wk(X),

`
J1 wk(X),a

J1 wk(X), Cd1 wk(X), Pb1 wk(X), V1 wk(X).

Jung’s results, cited above, were that V≤1 wk(X) and V1 wk(X) are stably compact for
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every stably compact space X . As we have said earlier, for spaces of continuous valuations,

the above is Jung’s proof (Jung, 2004; Alvarez-Manilla et al., 2004). The technique can

be considered to have its root in the proof of the Banach-Alaoglu Theorem. See also

Plotkin’s proof of a domain-theoretic variant of the latter (Plotkin, 2006), also inspired

by Jung.

We now characterize the de Groot dual of these spaces. As for A-valuations, this goes

through the definition of a dagger operation †. This was defined for continuous valuations

in (Tix, 1995).

Definition 6.5. Let X be a topological space. Given any continuous game ν, let ν†(Q)

be defined, for every compact saturated subset Q of X , by:

ν†(Q) = inf
U∈O(X)

Q⊆U

ν(U).

Lemma 6.6. Let X be stably compact, and Y be any of the spaces of continuous games

of Proposition 6.4.

For every compact saturated subset Q of X , for every r ∈ R, define 〈Q ≥ r〉 = {ν ∈

Y | ν†(Q) ≥ r}; then 〈Q ≥ r〉 is compact saturated in Y .

Proof. This is as for Lemma 5.15. In each case, Y is the space JP
wk(X) for some

conjunction of properties P as in Proposition 6.1, and is definable as [ΣP ] for some

system of patch-continuous inequalities ΣP . Consider [ΣP
Q≥r], where ΣP

Q≥r is obtained

from ΣP by adding all patch-continuous inequalities r ≤̇ (U), for all opens U of X

containing Q. By Proposition 5.5, [ΣP
Q≥r] is a stably compact space with the topology

induced by the product topology on [0, 1]
O(X)
σ .

Now r is not only continuous from JP (X) = [ΣP ] to JP
wk(X), but also from [ΣP

Q≥r] to

〈Q ≥ r〉, seen as a subspace of JP
wk(X) with the induced topology (i.e., with the weak

topology). This is again by Lemma 5.10. We must check that for every ν ∈ [ΣP
Q≥r], for

every open U of X containing Q, r(ν)(U) ≥ r: note that U is the directed union of all

opens V ⋐ U , and since Q is compact and contained in U , there must be an open V such

that Q ⊆ V ⋐ U . By assumption ν(V ) ≥ r, so r(ν)(U) = supV ⋐U ν(V ) ≥ r.

Clearly, r is a retraction, with canonical inclusion as section, so 〈Q ≥ r〉 is a retract of

[ΣP
Q≥r]. By Lawson’s Lemma 5.12, it is a stably compact space. As a subset of JP

wk(X),

it is then compact. That it is saturated is clear.

Lemma 6.7. Let X be a topological space, and Y be any space of maps from O(X)

to [0, 1]σ. Equip Y with its weak topology. Then the specialization ordering of Y is the

pointwise ordering: ν ≤ ν′ iff ν(U) ≤ ν′(U) for all opens U of X .

Proof. Write temporarily � for the specialization ordering, ≤ for the pointwise order-

ing. Recall that ν � ν′ iff ν′ belongs to any weak open that contains ν. Equivalently,

iff whenever ν ∈ [U > r], then ν′ ∈ [U > r], U open in X , r ∈ R. So, if ν ≤ ν′, then

ν � ν′. Conversely, if ν � ν′, for every open U and every real r < ν(U), we clearly

have ν ∈ [U > r], so ν′ ∈ [U > r], i.e., ν′(U) > r. Taking the sup over all values of r,

ν(U) ≤ ν′(U).
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Proposition 6.8. Let X be stably compact, and Y be any of the spaces of continuous

games of Proposition 6.4. The compact saturated subsets of Y are exactly the intersec-

tions of finite unions of sets of the form 〈Q ≥ r〉, Q compact saturated in X , r ∈ R. In

other words, the topology of Y d is generated by complements of sets of the form 〈Q ≥ r〉,

Q compact saturated in X , r ∈ R.

Proof. This is similar to Proposition 5.18. One direction is Lemma 6.6. Conversely,

let Q be a compact saturated subset of Y . As a subset of [O(X) → [0, 1]σ]p, Q is

again compact, since the weak topology on Y is induced from the product topology.

Write ↑Q the upward-closure of Q in [O(X) → [0, 1]σ]p. This is compact saturated

in [O(X) → [0, 1]σ]p. Now [0, 1]σ is a bc-domain with least element, and X is locally

compact, so [O(X) → [0, 1]σ]p = [O(X) → [0, 1]σ] by Lemma 5.16. So ↑Q is compact

saturated in [O(X) → [0, 1]σ], and Lemma 5.17 implies that ↑Q is an intersection of finite

unions of sets of the form 〈Q ≥ r〉∗, Q compact saturated subset of X , r ∈ [0, 1]. Since

Q is saturated in Y , and since the specialization orderings of Y and of [O(X) → [0, 1]σ]p
are the same (Lemma 6.7), Q = ↑Q ∩ Y . So Q is the intersection of finite unions of sets

of the form 〈Q ≥ r〉∗ ∩ Y = 〈Q ≥ r〉.

The above result was claimed in (Jung, 2004, last lines) for spaces of continuous (sub)norm-

alized valuations.

Definition 6.9 (Dual). Let X be a stably compact space. For every normalized game

ν on X , let the dual ν⊥ of ν be the map from O(Xd) to R+
σ defined by:

ν⊥(X \ Q) = 1 − ν†(Q).

This is of course very similar to Definition 5.19.

The definition may seem overly restrictive: we require ν to be normalized. One might

think of generalizing this to any game by letting ν⊥(X \Q) = ν(X)− ν†(Q). However, if

duality is to work on games, then in particular ν ≤ ν′ should imply ν′⊥ ≤ ν⊥—de Groot

duality reverses order—and this fails with the relaxed definition. Indeed, consider X =

{1, 2,⊥}, where ⊥ is least, and 1 and 2 are incomparable. Let ν = 1
2uX , ν′ = 1

4δ1 + 3
4δ2.

One checks that ν ≤ ν′ on the four non-empty opens of X : ν{1} = ν{2} = ν{1, 2} = 0,

while ν(X) = 1
2 , ν′(X) = 1. But ν⊥ and ν′⊥ are incomparable: e.g., ν⊥ maps the four

non-empty cocompacts {⊥}, {⊥, 1}, {⊥, 2} and X to 1
2 , while ν′⊥ maps them to 0, 1

4 ,
3
4 , and 1 respectively. So ⊥, with the relaxed definition would not be monotonic from

J≤1 wk(X) to J≤1 wk(Xd)d. One may object to this example, and prefer one with no

unanimity game and only continuous valuations. Using the one-to-one correspondence

between credibilities on X and continuous valuations on Q(X) (Theorem 6.18 below)

suggests considering Q(X), which is a four-element domain, and one would take ν∗ =
1
2δX , ν′∗ = 1

4δ{1} + 3
4δ{2}. We let the reader check that ν∗ ≤ ν′∗, but ν∗⊥ and ν′∗⊥ are

incomparable.

Up to the use of ⊥ instead of †, and up to the fact that we are considering games

and not just valuations, the following is (Tix, 1995, Satz 3.4).

Lemma 6.10 (Convex-concave Duality). Let X be stably compact. For every con-

tinuous normalized game ν on X , ν⊥ is a continuous normalized game on Xd. If ν is
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(totally) convex, then ν⊥ is (totally) concave. If ν if (totally) concave, then ν⊥ is (totally)

convex. If ν is a valuation, then so is ν⊥. Finally, ν⊥⊥ = ν.

Proof. Strictness, normalization, monotonicity, continuity, and the fact that ν⊥⊥ = ν

are as in Lemma 5.20, modulo change of notation. For every finite collection Q1, Q2, . . . , Qn

of compact saturated subsets of X (n ≥ 1),

ν†(

n⋃

i=1

Qi) = inf
U⊇

S

n
i=1

Qi

ν(U) = inf
Ui⊇Qi for all i,1≤i≤n

ν(

n⋃

i=1

Ui)

Indeed, the ≥ direction is by choosing Ui = U for all i, and the ≤ direction is by

monotonicity. We also have:

ν†(

n⋂

i=1

Qi) = inf
U⊇

T

n
i=1

Qi

ν(U) = inf
Ui⊇Qi for all i,1≤i≤n

ν(

n⋂

i=1

Ui)

The ≤ direction is again by monotonicity, while the ≥ direction is because X is weakly

Hausdorff. It follows that, if ν is convex, resp. totally convex, resp. concave, resp. totally

concave, then so is ν†. We deal with total convexity to demonstrate how this works. First,

note that the families of opens (Ui)
n
i=1 such that Ui ⊇ Qi for all i, 1 ≤ i ≤ n, are filtered

in the n-fold product of the inclusion ordering. Then, addition is co-continuous on R+,

i.e., commutes with infs of filtered families. So:

ν†(

n⋃

i=1

Qi) +
∑

I⊆{1,...,n},I 6=∅
|I| even

ν†(
⋂

i∈I

Qi)

= inf
Ui⊇Qi for all i,1≤i≤n

ν(

n⋃

i=1

Ui) +
∑

I⊆{1,...,n},I 6=∅
|I| even

inf
Ui⊇Qi for all i,1≤i≤n

ν(
⋂

i∈I

Ui)

= inf
Ui⊇Qi for all i,1≤i≤n


ν(

n⋃

i=1

Ui) +
∑

I⊆{1,...,n},I 6=∅
|I| even

ν(
⋂

i∈I

Ui)




≥ inf
Ui⊇Qi for all i,1≤i≤n




∑

I⊆{1,...,n},I 6=∅
|I| odd

ν(
⋂

i∈I

Ui)




=
∑

I⊆{1,...,n},I 6=∅
|I| odd

inf
Ui⊇Qi for all i,1≤i≤n

ν(
⋂

i∈I

Ui) =
∑

I⊆{1,...,n},I 6=∅
|I| odd

ν†

(⋂

i∈I

Qi

)

It follows that ⊥ exchanges (total) convexity with (total) concavity. Since valuations are

just games that are both convex and concave, ⊥ maps valuations to valuations.

Theorem 6.11 (Duality, Games, Topological Version). Let X be a stably compact

space. Then ⊥ defines an involutive homeomorphism, hence also an order-isomorphism:
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— from J1 wk(X)d to J1 wk(Xd);

— from
`

J1 wk(X)d to
a

J1 wk(Xd);

— from
a

J1 wk(X)d to
`

J1 wk(Xd);

— from Cd1 wk(X)d to Pb1 wk(Xd);

— from Pb1 wk(X)d to Cd1 wk(Xd);

— from V1 wk(X)d to V1 wk(Xd).

Proof. Let P be any property among “convex”, “concave”, “totally convex”, “totally

concave”, “modular”, and true. Let P be the property obtained from P by exchanging

(totally) “convex” with (totally) “concave”. Then ⊥ maps JP
wk(X)d to JP

wk(Xd) by

Lemma 6.10. The inverse image by ⊥ of the subbasic open [X \ Q > r] of JP
wk(Xd) (Q

compact saturated in X , r ∈ R) is the complement of 〈Q ≥ 1 − r〉, and the direct image

of the complement of 〈Q ≥ r〉 is [X \ Q > 1 − r]. By Proposition 6.8, ⊥ is continuous

and open from JP
wk(X)d to JP

wk(Xd). By the last claim of Lemma 6.10, ⊥ is involutive,

hence a homeomorphism.

In the special case of continuous valuations, V1(X)d and V1(Xd) are homeomorphic,

justifying our claim that nature is invariant under duality. This much can be proved using

an alternative, partly measure-theoretic argument: continuous valuations ν on stably

compact spaces X have unique extensions to regular Borel measures on Xpatch (Keimel

and Lawson, 2005, Theorem 8.3). Call µ this extension. The construction in op. cit.

shows that µ(Q) = ν†(Q) for any compact saturated subset Q of X , whence µ(X \ Q)

coincides with our ν⊥(X \ Q). Since µ is regular, ν⊥ is continuous. Moreover, one can

show that the topologies are the right ones in each case, using the fact that they coincide

with the topology induced by the weak topology on Borel measures on Xpatch induced

by the functionals µ 7→
∫

x∈Xpatch f(x)dµ, where f ranges over the perfect maps from X

to [0, 1]σ—i.e., the patch-continuous, order-preserving maps—see (Alvarez-Manilla et al.,

2004, Theorem 36).

Corollary 6.12 (Duality, Games, Domain-Theoretic). Let X be a stably compact

space such that both X and Xd are dcpos—e.g., a stably bicontinuous bicpo. Then ⊥

defines an involutive order-isomorphism:

— from J1(X)op to J1(Xop);

— from
`

J1(X)op to
a

J1(Xop);

— from
a

J1(X)op to
`

J1(Xop);

— from Cd1(X)op to Pb1(Xop);

— from Pb1(X)op to Cd1(Xop);

— from V1(X)op to V1(Xop).

Proof. We deal with the first claim, the others are similar. Since ⊥ is a homeomorphism

from J1 wk(X)d to J1 wk(Xd), it is an order-isomorphism between the underlying posets,

i.e., from J1(X)op to J1(Xd). Then, since Xd is a dcpo, it has the Scott topology of Xop,

i.e., Xd = Xop.

One may also observe that ⊥ reverses order directly: if ν ≤ ν′, then ν† ≤ ν′†, by the

definition of †, hence ν′⊥ ≤ ν⊥.
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The next corollary requires the following auxiliary lemma first.

Lemma 6.13. Let X be a stably compact space. For any continuous games ν, ν′ on X ,

for any r ∈ [0, 1], (rν + (1 − r)ν′)
⊥

= rν⊥ + (1 − r)ν′⊥.

The dual of any simple probability valuation
∑n

i=1 aiδxi
on X is the simple probability

valuation
∑n

i=1 aiδxi
on Xd.

Proof. The first claim follows easily from the fact that (rν)
†

= rν†, (ν + ν′)
†

= ν† +

ν′†, which follow from the co-continuity of multiplication by a non-negative real and of

addition respectively. (A map is co-continuous iff it commutes with filtered infs; we have

already used the notion in Lemma 6.10.) The second claim follows from the first and the

fact that δ⊥x = δx. Indeed, for any open X \ Q of Xd, δ⊥x (X \ Q) = 1 iff there is an open

U containing Q such that δx(U) = 0, iff there is an open U containing Q that does not

contain x. Since Q is saturated, this is equivalent to x 6∈ Q, i.e., δx(X \Q) = 1. (The fact

that δ⊥x = δx will be generalized in Lemma 6.21.)

Corollary 6.14. For any stably bicontinuous bicpo X with a bottom (⊥) and a top (⊤)

element, V1(X) is a stably bicontinuous bicpo with bottom element δ⊥ and top element

δ⊤, and ⊥ is an involutive homeomorphism from V1(X)op to V1(Xop).

Every continuous probability ν on X is both the least upper bound of a directed family

of simple probabilities way-below ν, and the inf of a filtered family of simple probabilities

way-above ν.

Proof. The first part follows from the fact that V1(Z) is a continuous dcpo with bottom

δ⊥ as soon as Z is a continuous dcpo with bottom ⊥ (Edalat, 1995, Section 3), that the

Scott topology agrees with the weak topology, and from Corollary 6.12. The second part

follows from Lemma 6.13, second part.

Again, the way-below and the converse of the way-above relations do not coincide in

general. Take X = {⊥,⊤} with ⊥ < ⊤, for example, then V1(X) is isomorphic to [0, 1]σ.

Continuous probability valuations clearly encode probabilistic choice, with no non-

determinism. We now demonstrate that credibilities encode certain mixes of demonic

non-determinism with probabilistic choice. This will have to be done by hand. However,

convex-concave duality will allow us to conclude immediately that plausibilities encode

exactly the corresponding mix of angelic non-determinism with probabilistic choice.

It is time we proved that every unanimity game was indeed a credibility.

Lemma 6.15. Every unanimity game uA (A 6= ∅) is a normalized credibility. It is

continuous iff A is compact, and uA = u↑A.

Proof. The argument rests on the well-known fact that if n ≥ 1, for any subset I0 ⊆

{1, . . . , n}, the sum
∑

I⊆I0
I 6=∅

(−1)|I|+1 is 0 if I0 is empty, and 1 otherwise, which we shall

call the Moebius identity.

Let I0 be set of all indices i, 1 ≤ i ≤ n, such that A ⊆ Ui. Then uA(
⋂

i∈I Ui) is

1 if I ⊆ I0, 0 otherwise. To prove (1), it is therefore enough to show uA (
⋃n

i=1 Ui) ≥
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∑
I⊆I0
I 6=∅

(−1)|I|+1. If I0 = ∅, then the right-hand side is 0. Otherwise, both sides of the

inequality equal 1.

If A is compact, then for any directed family (Ui)i∈I of opens, uA(
⋃

i∈I Ui) equals

1 iff A ⊆
⋃

i∈I Ui, iff A ⊆ Ui for some i ∈ I, iff supi∈I uA(Ui) = 1. Conversely, if

uA is continuous, any cover of A by a directed family (Ui)i∈I of opens is such that

1 = uA(
⋃

i∈I Ui) = supi∈I uA(Ui), so A ⊆ Ui for some i ∈ I, whence A is compact.

The fact that uA = u↑A is clear.

So the only continuous unanimity games are of the form uQ where Q is in the Smyth

powerdomain of X . This goes one step further:

Proposition 6.16. Let X be well-filtered and locally compact. The map u : Q 7→ uQ

is a continuous order-embedding of Q(X) into Cd1(X), and a topological embedding of

Q(X) into Cd1 wk(X).

Proof. That u is monotonic is clear. Continuity follows from the fact that, for every

filtered family (Qi)i∈I of non-empty compact saturated subsets of X , for every open

U , u
T

i∈I
Qi

(U) = 1 iff
⋂

i∈I Qi ⊆ U , iff Qi ⊆ U for some i ∈ I by well-filteredness,

iff supi∈I uQi
(U) = 1. The fact that u is an order-embedding means that Q ⊇ Q′ iff

uQ ≤ uQ′ . If uQ ≤ uQ′ , then every open U that contains Q is such that uQ(U) = 1, hence

uQ′(U) = 1, so U contains Q′. Since Q is saturated, we conclude that it contains Q′.

Now u is also continuous from Q(X) to Cd1 wk(X), since u
−1[U > r] equals 2U if

0 ≤ r < 1, is empty if r ≥ 1, and the whole of Q(X) if r < 0. It is an embedding because

the image of 2U is, say, [U > 1/2] ∩ Cd1(X), and such sets 2U generate the topology

of Q(X) when X is locally compact.

Clearly, there is also a continuous order-embedding of V1(X) into Cd1(X) which is also

a topological embedding of V1 wk(X) into Cd1 wk(X): the canonical inclusion. We take

this is as (relatively weak, for now) evidence that credibilities encode both demonic and

probabilistic choice.

We have already introduced uQ in Section 5, where these served as a functional descrip-

tion of the Smyth powerdomain. One can make this more precise, and give an explicit

characterization of those elements in the image of the embedding u.

Proposition 6.17. Let X be a sober space. Any continuous normalized credibility ν

such that ν only takes values 0 or 1 is of the form uQ, Q ∈ Q(X). In fact, this already

holds of all normalized convex games that take values 0 or 1 only.

Proof. Let ν be a convex game, ν(X) = 1, and ν only takes values 0 or 1. Let F be

the collection of all opens U such that ν(U) = 1. This is a Scott-open filter of opens.

Moreover, F is non-trivial, i.e., not the whole of O(X), since ∅ 6∈ F . The Hofmann-

Mislove Theorem implies that the intersection Q of all elements of F is a non-empty

compact saturated subset of X , and that Q ⊆ U iff U ∈ F , whence ν = uQ.

The fundamental theorem of credibilities is (Goubault-Larrecq, 2007a, Theorem 1),

which states similar evidence with much stronger force: essentially, it states that con-

tinuous credibilities are nothing else than specifications of random choices among sets
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Q of possible demonic choices, i.e., they are continuous valuations on Q(X). (This is a

refinement of the “completion of a misspecified model” of (Gilboa and Schmeidler, 1994,

Section 5).) We restate it below, together with the statement of Theorem 2 (Goubault-

Larrecq, 2007a). It turns out that Theorem 3 and Lemma 1 of op. cit. are wrong, see

Proposition 6.19 below. The proofs of the following results can be found in the companion

paper (Goubault-Larrecq, 2009, Section 3).

Theorem 6.18. Let X be a topological space. For any continuous valuation P on Q(X),

the game P2 defined by P2(U) = P (2U) is a continuous credibility on X .

The map P 7→ P2 is monotonic, Scott-continuous, and continuous from V1 wk(Q(X))

to Cd1 wk(X).

Assume now that X is well-filtered and locally compact space. Then, for every con-

tinuous credibility ν on X there is a unique continuous valuation ν∗ on Q(X) such that

ν(U) = ν∗(2U) for every open U of X .

The map ν 7→ ν∗ is a one-to-one mapping from Cd1(X) to V1(Q(X)), whose inverse

is P 7→ P2.

If additionally X is compact, then Cd1(X) is a continuous dcpo with bottom el-

ement uX , and with basis given by simple credibilities
∑n

i=1 aiuQi
(a1, . . . , an ∈ R+,

Q1, . . . , Qn ∈ Q(X)) that are normalized (
∑n

i=1 ai = 1).

Moreover, (
∑n

i=1 aiuQi
)
∗

=
∑n

i=1 aiδQi
.

More precisely, we have the stronger result that any continuous normalized credibility

ν on X is the least upper bound of a family of simple normalized credibilities (νi)i∈I

way-below ν, such that (ν∗
i )i∈I is also a directed family of simple probabilities way-below

ν∗ in V1(Q(X)).

Note that ν 7→ ν∗ is a one-to-one mapping, but is not an isomorphism in general. In fact,

it is not continuous, and not even monotonic. This explains the complex form that the

last statement of the above Theorem must have.

Proposition 6.19. The mapping ν 7→ ν∗ is not monotonic in general from Cd1(X) to

V1(Q(X)), even when X is finite.

Proof. Consider the space X = {1, 2,⊤}, where 1 ≤ ⊤, 2 ≤ ⊤, and 1 and 2 are incom-

parable, in its Scott topology. Let ν = 1
2u{1,⊤} + 1

2u{2,⊤}, and ν′ = 1
2u{⊤} + 1

2u{1,2,⊤}.

Then ν ≤ ν′, as one easily checks. But ν∗ 6≤ ν′∗, since ν∗({{1,⊤}, {2,⊤}, {⊤}}) = 1, but

ν′∗({{1,⊤}, {2,⊤}, {⊤}}) = 1
2 .

Another way to put it is as follows: there is another topology on Cd1(X) that is

induced from the weak topology on V1(Q(X)) by ν 7→ ν∗. This is strictly finer than the

weak topology on Cd1(X).

Proposition 6.20 (Soft Topology). Let X be stably compact. Let the soft topology on

Cd1(X) be induced from the weak topology on V1(Q(X)) by ν 7→ ν∗, i.e., the topology

whose opens are of the form {ν ∈ Cd1(X) | ν∗ ∈ U}, where U ranges over the open

subsets of V1 wk(Q(X)).

The soft topology is finer than the weak topology, in general strictly even on finite
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spaces. It is generated by the subbasic opens of the form:

[
±∑

U1, . . . , Un > r] =



ν ∈ Cd1(X) |

∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν(
⋂

i∈I

Ui) > r





where n ≥ 1, r ∈ R, and U1, . . . , Un are open in X . Its specialization ordering � is

defined by ν � ν′ iff, for every n ≥ 1, for all opens U1, . . . , Un,
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν(
⋂

i∈I

Ui) ≤
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν′(
⋂

i∈I

Ui)

Proof. Call elementary open of Q(X) any finite union of basic open subsets 2U , U

open in X . Every open subset of Q(X) is a directed union of elementary opens.

The soft topology is generated by the inverse images of subbasic opens [U > r] by the

map ν 7→ ν∗, where U ranges over the open subsets of Q(X). There is no need to consider

the case where U is empty, since [∅ > r] is either empty or the whole of V1(Q(X)). Since

all games considered here are continuous, we do not change the topology by requiring

U to be elementary. Let therefore write U as 2U1 ∪ . . . ∪ 2Un, n ≥ 1, where U1, . . . ,

Un are open in X . Then ν is such that ν∗ ∈ [U > r] iff ν∗(2U1 ∪ . . . ∪ 2Un) > r, iff∑
I⊆{1,...,n},I 6=∅(−1)|I|+1ν∗

(⋂
i∈I 2Ui

)
> r, iff

∑
I⊆{1,...,n},I 6=∅(−1)|I|+1ν

(⋂
i∈I Ui

)
> r,

i.e., iff ν ∈ [
∑± U1, . . . , Un > r].

It follows that the soft topology is finer than the weak topology, as [U > r] is the case

n = 1, U1 = U . The characterization of � also follows easily.

Then V1 wk(Q(X)) is homeomorphic to Cd1(X) with the soft topology, by construction.

So continuous credibilities are models of mixed choice, where the random player goes

first, then the demonic non-deterministic player. This is particularly clear on simple cred-

ibilities
∑n

i=1 aiuQi
: one chooses a set Qi with probability ai, then picks non-determinist-

ically from Qi.

Let us turn to plausibilities. Nicely enough, our duality ⊥ on games extends our

previous duality between Q(X) and H(X).

Lemma 6.21. Let X be stably compact. For any Q ∈ Q(X), the dual u
⊥
Q is eQ. For any

F ∈ HV(X), the dual e
⊥
F is uF .

Proof. By definition, for every open X \ Q′ of Xd, u
⊥
Q(X \ Q′) = 1 − infU⊇Q′ uQ(U).

If X \ Q′ intersects Q, then let x ∈ Q \ Q′. Since Q′ is saturated, and x is not in Q′,

there must be an open subset U of X containing Q′ but not x. In particular, Q is not

contained in U , so uQ(U) = 0, hence u
⊥
Q(X \ Q′) = 1. If X \ Q′ does not intersect Q,

then Q ⊆ Q′, so any open U containing Q′ contains Q, whence u
⊥
Q(X \ Q′) = 0. In any

case, u
⊥
Q(X \ Q′) = eQ(X \ Q′).

The fact that e
⊥
F is uF follows by duality: e

⊥
F = u

⊥⊥
F = uF .

It follows from Lemma 6.13, first part, that the duals (
∑n

i=1 aiuQi
)
⊥

of simple credibilities

are exactly the simple plausibilities
∑n

i=1 aieQi
on the dual space Xd (Qi closed in Xd).

Lemma 6.22. Every example game eA is continuous, and eA = ecl(A).
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For any continuous valuation P on HV(X), the game P3 defined by P3(U) = P (3U)

is a continuous plausibility on X . In particular, eF = δF 3 is a continuous plausibility.

The map P 7→ P3 is monotonic, Scott-continuous, and continuous from V1 wk(HV(X))

to Pb1 wk(X).

Proof. For any directed family of opens (Ui)i∈I ,
⋃

i∈I Ui intersects A if and only if

some Ui intersects A, so eA is continuous. For any open U , U intersects cl(A) iff it

intersects A, whence eA = ecl(A). Let P be a continuous valuation on HV(X). P satisfies

an equality dual to the inclusion-exclusion principle, which it is tempting to call the

exclusion-inclusion principle: P (
⋂n

i=1 Ui) =
∑

I⊆{1,...,n},I 6=∅(−1)|I|+1P (
⋃

i∈I Ui). Take

Ui = 3Ui, and notice that 3 commutes with finite unions, while 3
⋂n

i=1 Ui ⊆
⋂n

i=1 3Ui:

this shows that P3 is totally concave.

Finally, δF 3(U) equals 1 iff F ∈ 3U , iff eF (U) = 1, so eF = δF 3.

The last part of the Lemma is obvious.

One can relate example games to the Hoare powerdomain, much as unanimity games

relate to the Smyth powerdomain (Proposition 6.16, Proposition 6.17):

Proposition 6.23. Let X be a topological space. The map e : F 7→ eF is a continuous

order-embedding of H(X) into Pb1(X), and a topological embedding of HV(X) into

Pb1 wk(X).

Proof. That e is monotonic is clear. Continuity is easy, too: for every directed fam-

ily (Fi)i∈I of non-empty closed subsets of X , and every open U , ecl(
S

i∈I
Fi)(U) = 1 iff

cl(
⋃

i∈I Fi) intersects U , iff
⋃

i∈I Fi intersects U , iff some Fi intersects U , iff supi∈I eFi
(U) =

1. Next, e is also continuous from HV(X) to Pb1 wk(X), since e
−1[U > r] equals 3U

if 0 ≤ r < 1, is empty if r ≥ 1, and the whole of HV(X) if r < 0. It is an embedding

because the image of 3U is, say, [U > 1/2] ∩ Pb1(X), and such sets 3U generate the

topology of HV(X).

Proposition 6.24. Let X be a topological space. Any normalized continuous plausibility

ν such that ν only takes values 0 or 1 is of the form eF , F ∈ HV(X). In fact, this already

holds of all normalized concave games that take values 0 or 1 only.

Proof. Consider the complement F of the largest open U such that ν(U) = 0. F is

non-empty, otherwise ν(X) = 0. For every open set U , if U does not intersect F then

ν(U) = 0; if U does, then ν(U) 6= 0, whence ν(U) = 1. So ν = eF .

Duality allows us to obtain the following characterization of continuous plausibilities

as combinations of angelic choice and non-probabilistic choice, almost without effort. We

only need one extra lemma.

Lemma 6.25. Let X be stably compact. For every continuous credibility ν on X , for

every compact saturated subset Q of X , ν∗†(�Q) = ν†(Q).

Proof. For every open U containing Q, 2U contains �Q. It follows that ν∗†(�Q) ≤

infU⊇Q ν∗(2U) = ν†(Q). Conversely, any open U of Q(X) is a union of basic opens 2U ,
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say U =
⋃

i∈I 2Ui. If U contains �Q, then Q itself is in some 2Ui, that is, Q ⊆ Ui. So

ν∗†(�Q) = infU⊇�Q ν∗(U) ≥ infU⊇Q ν∗(2U) = ν†(Q).

Theorem 6.26. Let X be a stably compact space. For every continuous plausibility ν

on X there is a unique continuous valuation ν∗ on HV(X) such that ν(U) = ν∗(3U) for

every open U of X : ν∗ = ν⊥∗⊥.

The map ν 7→ ν∗ is a one-to-one mapping from Pb1(X) to V1(HV(X)), whose inverse

is P 7→ P3.

Pb1(X) is a continuous dcpo, and with basis given by simple plausibilities
∑n

i=1 aieFi

(a1, . . . , an ∈ R+, F1, . . . , Fn ∈ HV(X)) that are normalized (
∑n

i=1 ai = 1).

Moreover, (
∑n

i=1 aieFi
)∗ =

∑n
i=1 aiδFi

.

More precisely, we have the stronger result that any continuous normalized plausibility

ν on X is the least upper bound of a family of simple normalized plausibilities (νi)i∈I

way-below ν, such that (νi∗)i∈I is also a directed family of simple probabilities way-below

ν∗ in V1(HV (X)).

Proof. Observe that for every continuous probability P on Q(Xd) = HV(X)d (Theo-

rem 3.1), for every open U of X , P⊥(3U) = 1 − P †(�(X \U)). Indeed, 3U is the com-

plement of �(X \ U). Take P = ν⊥∗: then P⊥(3U) = 1 − ν⊥†(X \ U) (by Lemma 6.25)

= ν⊥⊥(U) = ν(U) (by Lemma 6.10). So ν∗ = ν⊥∗⊥ fits the bill. Uniqueness of ν∗ follows

from uniqueness of ν⊥∗ (Theorem 6.18) through duality (Theorem 6.11).

The other claims follow from Lemma 6.21, Lemma 6.13 (first part), and Lemma 6.22.

Let indeed ν be any normalized continuous plausibility. Then ν⊥ is a normalized contin-

uous credibility, and is therefore the least upper bound of some family (ν⊥
i )i∈I of duals

of simple normalized credibilities way-below ν such that (ν⊥∗
i )i∈I is also directed and

way-below ν∗, by Theorem 6.18. The claim follows.

Stable compactness is in fact not needed to establish the existence of the one-to-one

mapping ν 7→ ν∗: in the companion paper (Goubault-Larrecq, 2009, Section 3), we show

that core-compactness is the only property required of X to this end. Duality however

requires it.

Again ν 7→ ν∗ is not continuous, not even monotonic. We let the reader prove the

following analogue of Proposition 6.20.

Proposition 6.27 (Dual Soft Topology). Let X be stably compact. Let the dual soft

topology on Pb1(X) be induced from the weak topology on V1(HV(X)) by ν 7→ ν∗, i.e.,

the topology whose opens are of the form {ν ∈ Pb1(X) | ν∗ ∈ U}, where U ranges over

the open subsets of V1 wk(HV (X)).

The dual soft topology is finer than the weak topology, in general strictly even on finite

spaces. It is generated by the subbasic opens of the form:

[
∑

±

U1, . . . , Un > r] =



ν ∈ Pb1(X) |

∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν(
⋃

i∈I

Ui) > r





where n ≥ 1, r ∈ R, and U1, . . . , Un are open in X . Its specialization ordering � is
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defined by ν � ν′ iff, for every n ≥ 1, for all opens U1, . . . , Un,
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν(
⋃

i∈I

Ui) ≤
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν′(
⋃

i∈I

Ui)

Then V1 wk(HV(X)) is homeomorphic to Pb1(X) with the dual soft topology, by con-

struction.

We finally obtain the following natural continuation of Corollary 6.14, as a corollary

of Theorem 6.26.

Corollary 6.28. For any stably bicontinuous bicpo X , Cd1(X) and Pb1(X) are sta-

bly bicontinuous bicpos, and ⊥ is an involutive homeomorphism from Cd1(X)op to

Pb1(Xop) and from Pb1(X)op to Cd1(Xop).

Every continuous normalized credibility (resp., plausibility) ν on X is both the least

upper bound of a directed family of simple normalized credibilities (resp., plausibilities)

way-below ν, and the inf of a filtered family of simple normalized credibilities (resp.,

plausibilities) way-above ν.

7. Mixed Choice II: Previsions

A better model for mixed choice, notably as applied to higher-order programming lan-

guages, is given by continuous previsions, and by forks, as argued in (Goubault-Larrecq,

2007b). On stably compact continuous pointed dcpos, the latter are isomorphic to a nor-

malized variant of spaces invented independently by Mislove (Mislove, 2000) and by Tix

(Tix, 1999; Tix et al., 2005), as we have shown in (Goubault-Larrecq, 2008a). The lat-

ter rests heavily on an extension of the convex-concave duality to previsions. One notes

that the asymmetric version of the Kantorovich-Rubinstein that we proved in (Goubault-

Larrecq, 2008b) also rests heavily on yet another variant, which occurs as a simplification

of the latter when applied to 1-Lipschitz maps.

It is certainly not our goal to reprove these results here. Our purpose is to establish

duality theorems for previsions and forks. Some of the basic results appear in (Goubault-

Larrecq, 2008a), with only proof sketches or no proof, and the duality results themselves,

which we establish below, are new.

For any topological space X , let 〈X → R+
σ 〉 be the poset of all bounded continuous

maps from X to R+
σ . Recall that we take R+

σ with the Scott topology, whose non-trivial

opens are the open intervals (t, +∞), t ∈ R+, and order 〈X → R+
σ 〉 pointwise. Similarly,

let 〈X → R+〉 be the dcpo of all continuous maps from X to R+.

Definition 7.1 (Previsions, Forks). A prevision F on a topological space X is a

monotonic map F from 〈X → R+
σ 〉 to R+

σ such that F (af) = aF (f) for every a ∈ R+

(positive homogeneity).

F is continuous iff it is Scott-continuous.

F is lower iff F (h+h′) ≥ F (h) +F (h′) for all h, h′, upper iff F (h+h′) ≤ F (h) +F (h′)

for all h, h′, linear iff F (h + h′) = F (h) + F (h′), normalized iff F (a + h) = a + F (h) for

every function h and every constant a ∈ R+, subnormalized iff F (a + h) ≤ a + F (h) for

every h and constant a.
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A fork is a pair (F−, F+) of continuous previsions, where F− is lower, F+ is upper,

and Walley’s condition:

F−(h + h′) ≤ F−(h) + F+(h′) ≤ F+(h + h′)

holds for all h, h′. A fork is normalized, resp. sub-normalized, whenever both F− and F+

are.

We let P1(X) be the poset of all continuous normalized previsions on X ,
`

P1(X),a
P1(X) and P△

1 (X) be the dcpos of those continuous normalized previsions that are

lower, resp. upper, resp. linear. F1(X) is the space of all normalized forks on X .

We write P1 wk(X),
`

P1 wk(X),
a

P1 wk(X), P△
1 wk(X) the corresponding spaces

with the weak topology, generated by the subbasic opens [f > r], defined as the subset

of those previsions F such that F (f) > r, f ∈ 〈X → R+
σ 〉, r ∈ R+. F1 wk(X) is the space

F1(X) with the weak topology, defined as the one induced by the product topology on`
P1 wk(X) ×

a
P1 wk(X).

It is easy to show that P1(X),
`

P1(X),
a

P1(X), and P△
1 (X) are dcpos, using the

fact that addition is Scott-continuous on R+. Again, the weak topologies are just the

topologies of pointwise convergence.

It was shown in (Goubault-Larrecq, 2007b) that, among the continuous normalized pre-

visions, the lower brand was an adequate model of mixed probabilistic and demonically

non-deterministic choice, the upper brand was one of mixed probabilistic and angeli-

cally non-deterministic choice, while normalized forks were an adequate model of mixed

probabilistic and erratically non-deterministic choice. Moreover, they give rise to strong

monads, something that is not true of any of the game constructions
`

J1,
a

J1, Cd1,

or Pb1.

The Scott topology is always finer than the weak topology. When X is a contin-

uous pointed dcpo, the two topologies coincide for continuous linear previsions, i.e.,

P△
1 wk(X) = P△

1 (X). This can be shown as follows. First, V1 wk(X) = V1(X): as we

have seen in Section 6, this is a consequence of (Tix, 1995, Satz 4.10) and Edalat’s

trick. Second, V1(X) is isomorphic to P△
1 (X). In one direction, one builds a continuous

linear prevision αC(ν) for any ν ∈ V1(X) by integration: αC(ν)(h) =
∫

x∈X h(x)dν. Con-

versely, any continuous linear prevision G gives rise to a continuous probability γC(G):

γC(G)(U) = G(χU ), where for every open U , χU is the (continuous) map from X to

R+
σ that sends x to 1 if x ∈ U , to 0 otherwise. This is an isomorphism, as noted by

(Jung, 2004), who refers to Tix (Tix, 1995, Satz 4.10), who cites Kirch (Kirch, 1993,

Satz 8.6). This isomorphism extends to a homeomorphism between P△
1 wk(X) and the

space V1(X) equipped with the topology generated by subbasic opens [f > r] = {ν ∈

V1(X) |
∫

x∈X
f(x)dν > r}, f ∈ 〈X → R+〉, r ∈ R+. The latter is what Jung calls the

weak topology on V1(X) (Jung, 2004; Alvarez-Manilla et al., 2004); but the latter is

exactly the weak topology in our sense, which Jung calls the product topology (Jung,

2004, Theorem 3.3).

The two maps αC and γC extend to general continuous games and previsions. We

define instead αC(ν) as the Choquet integral C
∫

x∈X h(x)dν (Goubault-Larrecq, 2007b).

This integral is extensively studied in (Denneberg, 1994), using the more general setting
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of integration of measurable maps, and games defined not on a topology but on general

algebras. For the sake of completeness, we give a summary of the basic properties of this

integral. Since we integrate continuous maps only, integration will commute with sups of

directed sets, not just of increasing sequences.

The Choquet integral of h ∈ 〈X → R+
σ 〉 along an arbitrary game ν is defined as

the ordinary Riemann integral
∫ +∞

0 ν(h−1(t, +∞))dt. This is defined, as the map t 7→

ν(h−1(t, +∞)) is non-increasing, and maps every t ≥ supx∈X h(x) to 0; note that ev-

ery non-increasing map, even non-continuous, is Riemann-integrable on any bounded

interval.

Proposition 7.2. For any (continuous) game ν on the topological space X , the map

F = αC(ν) is a (continuous) prevision, and γC(αC(ν)) = ν. If ν is (sub)normalized, then

so is F .

Proof. The Choquet integral is monotonic in the integrated function: if h ≤ h′, then

h−1(t, +∞) ⊆ h′−1
(t, +∞) for every t ∈ R+. Let us show that αC(ν) is continuous as

soon as ν is. If h ∈ 〈X → R+
σ 〉 is the sup of a directed family (hi)i∈I of elements of 〈X →

R+〉, then C
∫

x∈X
h(x)dν =

∫ +∞

0
ν(
⋃

i∈I h−1
i (t, +∞))dt =

∫ +∞

0
supi∈I ν(h−1

i (t, +∞))dt

(because ν is continuous) = supi∈I C
∫

x∈X
hi(x)dν. The latter equality uses the fact that

Riemann integrals are Scott-continuous in the integrated non-increasing function, as

noticed in (Tix, 1995, Lemma 4.2). (This would not hold with other classes of integrated

functions. For example, we need to use the Lebesgue integral instead of the Riemann

integral just to prove that integration commutes with sups of countable non-decreasing

sequences of integrable functions.)

Next, αC(ν) is positively homogeneous: for all a ∈ R+, αC(ν)(af) = 0 if a = 0, else

αC(ν)(af) =
∫ +∞

0 ν(f−1(t/a, +∞))dt = a αC(ν)(f) by change of variables.

Then, γC(αC(ν))(U) = αC(ν)(χU ) =
∫ +∞

0
ν(χ−1

U (t, +∞))dt =
∫ 1

0
ν(U)dt +

∫ +∞

1
0dt =

ν(U), so γC(αC(ν)) = ν.

Finally, let ν be (sub)normalized. Then we compute αC(ν)(f+a) = C
∫

x∈X
(f(x)+a)dν =∫ +∞

0 ν(f−1(t−a, +∞))dt =
∫ a

0 ν(X)dt+
∫ +∞

a ν(f−1(t−a, +∞))dt = aν(X) +αC(ν)(f).

This is less than or equal to a + αC(ν)(f) is ν is subnormalized, and equal to it if ν is

normalized.

Further connections between games and previsions are obtained by appealing to step

functions .

Definition 7.3. A function f : X → R is a step function if and only if it is of the

form
∑n

i=0 aiχUi
, where X = U0 ⊇ U1 ⊇ . . . ⊇ Un is a sequence of opens, and a0 ∈ R,

a1, . . . , an ∈ R+.

It is well-known that any element f of 〈X → Rσ〉 is the sup of a directed family of step

functions, namely fK = a + 1
2K

∑⌊(b−a)2K⌋
k=1 χf−1(a+ k

2K ,+∞), K ∈ N, where a is any lower

bound for f and b is any upper bound for f .

The following characterizes Choquet integration on step functions that take non-

negative values. In this case, a0 also is in R+.



J. Goubault-Larrecq 46

Lemma 7.4. For any step function f with non-negative values
∑n

i=0 aiχUi
, where X =

U0 ⊇ U1 ⊇ . . . ⊇ Un is a sequence of opens, and a0, a1, . . . , an ∈ R+:

C

∫

x∈X

f(x)dν =
n∑

i=0

aiν(Ui)

Proof. Split the Riemann integral
∫ +∞

0 ν(f−1(t, +∞))dt as the sum of integrals from

0 to a0, from a0 to a0 + a1, . . . , from a0 + . . . + an−1 to a0 + . . . + an−1 + an, and from

an to +∞, then rearrange the sum.

Since Choquet integration is continuous, this in fact characterizes it completely. Our

definition of Choquet integral assumes the integrated function takes only non-negative

values. There is a more complicated formula in the case of general real-valued functions.

However, we notice that we can define C
∫

x∈X
f(x)dν, when f is no longer non-negative,

as α̂C(ν)(f) (see Definition 7.7 below); then the formula of Lemma 7.4 holds even when

a0 < 0.

Lemma 7.5. Let X be a topological space, and f ∈ 〈X → R+
σ 〉.

For every credibility ν on X , if ν∗ exists (e.g., when X is well-filtered and locally

compact, see Theorem 6.18), then:

C

∫

x∈X

f(x)dν = C

∫

Q∈Q(X)

min
x∈Q

f(x)dν∗.

For every plausibility ν on X , if ν∗ exists (see Theorem 6.26), then:

C

∫

x∈X

f(x)dν = C

∫

F∈HV(X)

sup
x∈F

f(x)dν∗.

Proof. First, the map Q 7→ minx∈Q f(x) is well-defined and continuous. It is well-

defined because the image by f of any non-empty compact Q is compact in R+
σ , therefore

its saturation is of the form [r, +∞) for some r ∈ R+. Then r = minx∈Q f(x). It is

continuous because the inverse image of (t, +∞) is 2f−1(t, +∞) for all t ∈ R+. Now:

C

∫

Q∈Q(X)

min
x∈Q

f(x)dν∗ =

∫ +∞

0

ν∗(2f−1(t, +∞))dt =

∫ +∞

0

ν(f−1(t, +∞))dt = C

∫

x∈X

f(x)dν

using Theorem 6.18 in the middle equation. The other claim is proved similarly, using

the fact that the inverse image of (t, +∞) by the map F 7→ supx∈F f(x) is 3f−1(t, +∞).

When the assumptions of Theorem 6.18 are satisfied, this makes it clear how continuous

credibilities encode probabilistic choice first, of some Q ∈ Q(X), drawn at random along

the valuation ν∗, followed by demonic non-deterministic choice. Demonic takes a clear

meaning here: the non-deterministic player tries to minimize the gain f(x) by computing

minx∈Q f(x) for each choice of Q. Similary, under the assumptions of Theorem 6.26, where

ν is a continuous plausibility, an angelic player tries to maximize the gain.

The formulae above are probably a bit clearer if one realizes that integrating f along

the valuation δx yields f(x). When ν is a simple credibility
∑n

i=1 aiuQi
, ν∗ exists, without
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any assumption on the ambient space X , and equals
∑n

i=1 aiδQi
, so αC(ν) maps each

h ∈ 〈X → R+
σ 〉 to

∑n
i=1 ai minx∈Qi

h(x): this is the average of all possible least gains

minx∈Qi
, when Qi is chosen with probability ai—a mean of mins in the words of (Gilboa

and Schmeidler, 1994, Theorem 4.3). Similarly, if ν =
∑n

i=1 aieFi
is a simple plausibility,

then αC(ν)(h) =
∑n

i=1 ai supx∈Fi
h(x).

The demonic variant of Shapley’s Theorem (Goubault-Larrecq, 2007b, Theorem 4)

states that any continuous normalized lower prevision F has a non-empty continuous

heart CCoeur1(F ) = {G ∈ P△
1 (X) | F ≤ G}, provided X is stably compact. This

is, up to isomorphism, the core of F , namely the set of all probabilities p such that

C
∫

x∈X
h(x)dp is greater than or equal to F (h) for all h ∈ 〈X → R+

σ 〉. The demonic vari-

ant of Rosenmuller’s Theorem (Goubault-Larrecq, 2007b, Theorem 5) states that, if we

fix h ∈ 〈X → R+
σ 〉, then there is even one such p such that C

∫
x∈X

h(x)dp equals F (h).

In particular, for all h, F (h) = minG∈CCoeur1(F ) G(h) = minp in the core of F C
∫

x∈X
h(x)dp,

showing that continuous normalized lower previsions operate a mixed choice. This time,

the demonic player plays first, and finds a probability that minimizes the average gain

of the random player—a min of means . This is the starting point of (Goubault-Larrecq,

2008a), where we show that the space of continuous normalized lower previsions is iso-

morphic to the subspace of so-called strongly convex elements of Q(V1 wk(X)). This is

the demonic case. The angelic and erratic cases are also dealt with, using convex-concave

duality; this culminates in theorems showing that the prevision and fork models are

isomorphic to the Mislove-Tix-Keimel-Plotkin models on stably compact, continuous,

pointed dcpos. We won’t go as far: we shall have enough work to study convex-concave

duality itself.

We finish our study of the relations between games and previsions by the following.

Proposition 7.6. If ν is a continuous convex game, then αC(ν) is a continuous lower

prevision. If ν is a continuous concave game, then αC(ν) is a continuous upper prevision.

If ν is a continuous valuation, then αC(ν) is a continuous linear prevision.

Proof. The main ingredient is to notice that, for any opens U , V of X , χU∪V +χU∩V =

χU + χV . Let ν be a convex game. Let g be a step function of the form ǫ
∑n

i=1 χUi
,

U1 ⊇ . . . ⊇ Un, ǫ > 0. By convention let Ui = X for all i ≤ 0, and Ui = ∅ for all

i > n. We first observe that for any open V , g + ǫχV = ǫ
∑n+1

i=1 χWi
where Wi =

(Ui−1 ∩ V ) ∪ Ui for all i ∈ Z forms a non-increasing family of opens. Indeed, χ(Wi) =

χUi−1∩V + χUi
− χUi∩V (since Ui ⊆ Ui−1), then cancel the first and last terms in pairs

in the sum. So C
∫

x∈X
(g(x) + ǫχV (x))dν = ǫ

∑n
i=1 ν(Wi) ≥ ǫ

∑n
i=1[ν(Ui−1 ∩ V ) + ν(Ui) −

ν(Ui ∩ V )] = ǫν(V ) + C
∫

x∈X
g(x)dν, where the ≥ sign follows from the convexity of ν.

By induction on m, it follows that whenever g′(x) is another step function of the form

ǫ
∑m

j=1 χVj
, V1 ⊇ . . . ⊇ Vm, C

∫
x∈X(g(x) + g′(x))dν ≥ C

∫
x∈X g′(x)dν + C

∫
x∈X g(x)dν. For

all f, f ′ ∈ 〈X → R+
σ 〉, f is a sup of a directed family (fK)K∈N

(see comment after

Definition 7.3, with a = 0, ǫ = 1/2K), and similarly for f ′. Taking g = fK , g′ = f ′
K ,

we have just shown that αC(ν)(fK + f ′
K) ≥ αC(ν)(fK) + αC(ν)(f ′

K). By Scott-continuity

(Proposition 7.2), αC(ν)(f + f ′) ≥ αC(ν)(f) + αC(ν)(f ′), so αC(ν) is lower. The other

claims are proved similarly. In fact, αC(ν) is lower, resp. upper, resp. linear when ν is
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convex, resp. concave, resp. modular, without assuming that ν is continuous (Goubault-

Larrecq, 2007, Section 4.3); this just requires a bit more care.

One should note that the converse of Proposition 7.6 does not hold: there are continuous

(lower, upper) previsions that do not arise from continuous (convex, concave) games.

E.g., on X = {1, 2} with the discrete topology, any convex game is of the form a1δ1 +

a2δ2 + a12uX , for some reals a1, a2 ≥ 0 and a12 (not necessarily non-negative) such that

a12 ≥ −a1 − a2 (Gilboa and Schmeidler, 1994). Then αC(ν)(h) = a1h(1) + a2h(2) +

a12 min(h(1), h(2)). This is a piecewise linear function of h(1), h(2). However, there are

other, non-piecewise linear functions that arise as continuous convex previsions, e.g.,

the entropy functional F (h) = h(1)
h(1)+h(2) log h(1)

h(1)+h(2) + h(2)
h(1)+h(2) log h(2)

h(1)+h(2) . In fact,

all continuous previsions arising from games through αC are collinear , meaning that

αC(ν)(h + h′) = αC(ν)(h + h′) for all h, h′ ∈ 〈X → R+〉 that are comonotonic, i.e., such

that there are no two points x, x′ ∈ X such that h(x) < h(x′) and h′(x′) < h′(x). One

can show that αC then defines an isomorphism between spaces of continuous (convex,

concave) games and of continuous collinear (lower, upper) previsions (Goubault-Larrecq,

2007b, Theorem 1). Again, this would lead us too far astray.

We turn to the core of this section: the convex-concave duality on spaces of previsions.

This takes a very simple form, if we ignore technical details: the dual of F should be

F⊥ = λh ∈ 〈X → R+
σ 〉 · −F (−h). If F is lower, then F⊥ will be upper, and conversely,

moreover F⊥⊥ = F .

Unfortunately, F (−h) is in general ill-defined: First, −h does not take its values in R+
σ

(easy to repair, see below); second, −h is far from being continuous from X to R+
σ : the

inverse image of the open (t, +∞) by −h is h−1(−∞,−t), of which we know nothing.

We shall therefore approximate continuous maps h by perfect maps g (Definition 4.6),

noticing that whenever g : X → Rσ is perfect, then so is −g : Xd → Rσ, as soon as X is

stably compact.

To correct the first problem, extend any normalized prevision F on X to a new func-

tional F̂ . Let 〈X → Rσ〉 be the space of all bounded continuous maps from X to R, with

the Scott topology of the pointwise ordering.

Definition 7.7. Let X be a stably compact space. For any normalized prevision F on

X , define F̂ : 〈X → Rσ〉 → Rσ by:

F̂ (h) = F (h + a) − a,

for any a ≥ − infx∈X h(x).

This is independent of a, because F is normalized, so F̂ is well-defined.

Lemma 7.8. For any normalized prevision F , F̂ is monotonic, i.e., for any two maps

h, h′ ∈ 〈X → Rσ〉, if h ≤ h′ then F̂ (h) ≤ F̂ (h′); F̂ is positively homogeneous , i.e., for all

r ∈ R+
σ and h ∈ 〈X → Rσ〉, F̂ (rh) = rF̂ (h); F̂ is normalized , i.e., a + F̂ (h) = F̂ (a + h)

for all a ∈ R; finally, F̂ is lower, resp. upper, resp. linear whenever F is.

Proof. Monotonicity is clear. Positive homogeneity: assume infx∈X h(x) < 0, other-

wise the claim is clear; if r = 0, then F̂ (rh) = F (0) − 0 = 0, else pick r larger than
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− infx∈X h(x), then F̂ (rh) = F (rh + ra) − ra = r(F (h + a) − a) = rF̂ (h). Normaliza-

tion: for all a ∈ R, let a′ ≥ − infx∈X(a + h), then F̂ (a + h) = F (h + a + a′) − a′ =

F (h + (a + a′)) − (a + a′) + a = F̂ (h) + a. The last claim is clear.

Solving the second problem will be done through the approximation of continuous

maps by perfect maps, as we have said above. It has been observed several times that,

when X is stably compact, every continuous map h from X to Rσ is the sup of a directed

family of perfect maps g below h (Edwards, 1978); see also (Alvarez-Manilla et al., 2004,

Lemma 17), or (Lawson, 1991, Theorem 13). We give a proof in Proposition 7.11 below.

Then we will define F⊥(g) as −F̂ (−g) for all (bounded) perfect maps g : Xd → R+
σ ,

and extend by continuity to all bounded continuous maps from Xd to R+.

We now observe that we can even approximate h by perfect maps g ≪ h. The following

lemma is due to one of the anonymous referees:

Lemma 7.9. Let X be a stably compact space, and g a perfect map from X to R+
σ . For

every ǫ > 0, the map gǫ : x 7→ max(g(x) − ǫ, 0) is perfect and gǫ ≪ g in 〈X → R+
σ 〉.

Proof. First, gǫ is perfect, as a composition of perfect maps.

Second, let (fi)i∈I be a directed family in 〈X → R+
σ 〉 such that supi∈I fi exists and

g ≤ supi∈I fi. For every x ∈ X such that g(x) > ǫ, let ix be an element of I such that

fix
(x) > g(x) − ǫ/2. Then consider Ux = {z ∈ X | fix

(z) > g(z) − ǫ/2}. Note that Ux =

{z ∈ X | ∃t ∈ R · fix
(z) > t and t > g(z) − ǫ/2} =

⋃
t∈R

f−1
ix

(t, +∞) \ g−1[t + ǫ/2, +∞)

is patch-open, since fix
is continuous and g is perfect. Also, Ux contains x.

Let Q = g−1[ǫ, +∞): this is compact since g is perfect, and therefore also patch-

closed, hence patch-compact. Since Q is contained in
⋃

x∈X
g(x)>ǫ/2

Ux, there is a finite set

A of elements x ∈ X with g(x) > ǫ/2 such that Q ⊆
⋃

x∈A Ux. That is, for every z ∈ X

such that g(z) ≥ ǫ (i.e., z ∈ Q), there is an x ∈ A such that fix
(z) > g(z) − ǫ/2. Since

(fi)i∈I is directed, pick an i ∈ I such that fix
≤ fi for all x ∈ A: for every z ∈ X such

that g(z) ≥ ǫ, we obtain that fi(z) > g(z) − ǫ/2. It follows that fi(z) ≥ gǫ(z) for all

z ∈ X . So gǫ ≪ g.

The Urysohn-Nachbin Lemma (Gierz et al., 2003, Exercise VI-1.16) states that in any

monotone normal pospace, for every upward-closed closed subset Q, for every downward-

closed closed subset F such that Q ∩ F = ∅, there is a continuous order-preserving map

f : X → [0, 1] that is identically 0 on F and identically 1 on Q. This certainly applies to

compact pospaces, by Proposition VI.1.8 of op.cit., so:

Lemma 7.10. Let X be stably compact. For every compact saturated subset Q and for

every closed subset F such that Q ∩ F = ∅, there is a perfect map g : X → [0, 1]σ that

is identically 0 on F and identically 1 on Q.

Proposition 7.11. Let X be stably compact. Then 〈X → R+
σ 〉 is a continuous poset,

with a basis of perfect maps; 〈X → [0, 1]σ〉 is a continuous dcpo, with a basis of perfect

maps.

Proof. Since X is locally compact, for each open subset U of X , U is the union of the

directed family of all interiors int(Q) of compact saturated subsets Q of U . Consider the
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family of all perfect maps g : X → [0, 1]σ that are identically 0 outside of U . This is a

directed family, and Lemma 7.10 entails that for each compact saturated subset Q of U ,

there is one element of this family that is identically 1 on Q. It follows that the sup of

this family is χU .

In particular, any step function 1/2K
∑N

k=1 χUk
is also the sup of a directed family of

perfect maps, namely those of the form 1/2K
∑N

k=1 gk where for each k, gk is perfect,

with values in [0, 1], and identically 0 outside of Uk. Given any directed family D of

perfect maps g whose sup is 1/2K
∑N

k=1 χUk
, D(ǫ) = {gǫ | g ∈ D} is also a directed

family of perfect maps, and these are way-below 1/2K
∑N

k=1 χUk
.

Any bounded continuous map f from X to R+ is the sup of a directed family of step

functions (fi)i∈I . It is standard that if each fi is itself the sup of a directed family of

elements (gij)j∈Ji
way-below fi (here, consisting of perfect maps), then f is itself the

sup of the family (gij) i∈I
j∈Ji

, and the latter is directed.

We can now define F⊥.

Definition 7.12 (F⊥). Let X be a stably compact space, F a normalized prevision on

X . The dual F⊥ of F is the unique continuous map from 〈Xd → R+
σ 〉 to R+

σ such that:

F⊥(h) = −F̂ (−h)

for all perfect maps h from Xd to R+.

This is given by Scott’s formula: F⊥(h) = a + supg≪dh −F (a − g), where g ranges over

perfect maps from Xd to R+
σ , and a ≥ supx∈X h(x). We use the notation ≪d to make it

clear that we are using the way-below relation on 〈Xd → R+
σ 〉, not on 〈X → R+

σ 〉.

Proposition 7.13. Let X be stably compact, F a normalized prevision on X . Then F⊥

is a continuous, normalized prevision on Xd. If F is continuous, then F⊥⊥ = F .

Proof. By Lemma 5.7, F⊥ is continuous (and monotonic). We must show that it is

positively homogeneous. First, F⊥(0) = −F (−0) = 0 since 0 is perfect. For every α > 0,

by Lemma 7.8 F⊥(αh) = αF⊥(h) whenever h is perfect, so the map h 7→ 1
αF⊥(αh) is a

(necessarily continuous) map from 〈Xd → R+
σ 〉 to R+

σ that coincides with F⊥ on perfect

maps. By uniqueness, they are equal, i.e., F⊥(αh) = αF⊥(h) for all continuous h. We

show that F⊥ is normalized, i.e., that F⊥(a + h) = a + F⊥(h) for all h, in a similar way,

considering the map h 7→ F⊥(a + h) − a. That F⊥⊥ = F when F is continuous follows

from the fact that F⊥⊥ and F coincide on perfect maps.

Our next step is to show that F⊥ is lower whenever F is upper and conversely. This

requires us to show that addition on 〈Xd → R+
σ 〉 preserves and reflects ≪d (recall Def-

inition 5.8). The cone 〈Xd → R+
σ 〉 will then be additive, a notion defined for d-cones in

(Keimel, 2006, Definition before Lemma 4.2).

We deal with 〈X → R+
σ 〉 instead of 〈Xd → R+

σ 〉, to avoid carrying d exponents. That

addition reflects ≪ follows from the fact that addition is Scott-continuous:

Lemma 7.14. Let X be stably compact, and f , g two bounded continuous functions
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from X to R+
σ . If h ≪ f + g, then there are perfect maps f ′, g′ from X to R+

σ such that

have h ≤ f ′ + g′, f ′ ≪ f and g′ ≪ g.

Proof. Let Bf the set of all perfect maps f ′ such that f ′ ≪ f , Bg that of all perfect

maps g′ such that g′ ≪ g. By Proposition 7.11, f = supf ′∈Bf
f ′, g = supg′∈Bg

g′. Since

addition is Scott-continuous, f + g = supf ′∈Bf ,g′∈Bg
f ′ + g′. Moreover, Bf and Bg are

directed, so Bf × Bg is, too. Since h ≪ f + g, there are f ′ ∈ Bf and g′ ∈ Bg such that

h ≤ f ′ + g′.

Addition also preserves ≪.

Lemma 7.15. Let X be stably compact. For all bounded continuous functions f , f ′, h,

h′ from X to R+
σ , if f ≪ h and f ′ ≪ h′, then f + f ′ ≪ h + h′.

Proof. By Proposition 7.11, we can appeal to interpolation: there are perfect maps g

and g′ such that f ≪ g ≪ h and f ′ ≪ g′ ≪ h′. Since (gǫ)ǫ>0 is a directed family whose

sup is g, and f ≪ g, for every small enough ǫ > 0, f ≤ gǫ. Similarly, we may require

that ǫ > 0 be small enough that f ′ ≤ g′ǫ. Then f + f ′ ≤ gǫ + g′ǫ ≤ (g + g′)ǫ, so that

f + f ′ ≪ g + g′, by Lemma 7.9. Therefore f + f ′ ≪ h + h′.

Proposition 7.16. Let X be stably compact, F a normalized prevision on X . If F is

lower, then F⊥ is upper. If F is upper, then F⊥ is lower.

Proof. Let F be lower, i.e., super-additive. Then for each h, h′ ∈ 〈Xd → R+
σ 〉, letting

a ≥ supx∈X h(x) and a′ ≥ supx∈X h′(x):

F⊥(h) + F⊥(h′) = a + sup
g perfect≪dh

(−F (a − g)) + a′ + sup
g′ perfect≪dh′

(−F (a′ − g′))

= a + a′ + sup
g perfect≪dh

g′ perfect≪dh′

(−F (a − g) − F (a′ − g′))

≥ a + a′ + sup
g perfect≪dh

g′ perfect≪dh′

(−F (a + a′ − g − g′))

= a + a′ + sup
g′′ perfect≪dh+h′

(−F (a + a′ − g′′)) = F⊥(h + h′)

where in the last line we have used that addition preserves (Lemma 7.15) and reflects

(Lemma 7.14) ≪d. Similarly, F⊥ is lower whenever F is upper.

Recall that we say that ⊥ is involutive iff ⊥⊥ is the identity map. To sum up:

Theorem 7.17 (Duality, Previsions, Order-Theoretic). Let X be a stably compact

space. For every normalized prevision F on X , F⊥ is a normalized prevision on Xd.

Moreover: (1) F⊥ is continuous; (2) if F is lower, then F⊥ is upper; (3) if F is upper,

then F⊥ is lower; (4) if F is linear, then so is F⊥; (5) if F is continuous, then F⊥⊥ = F ;

(6) if F ≤ F ′ then F ′⊥ ≤ F⊥.

It follows that F 7→ F⊥ is an involutive order-isomorphism:

— from P1(X)op to P1(Xd);

— from
`

P1(X)op to
a

P1(Xd);
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— from
a

P1(X)op to
`

P1(Xd);

— from P△
1 (X)op to P△

1 (Xd).

Proof. (1) and (5) are by Proposition 7.13. (2) and (3) are by Proposition 7.16. (4) is

a trivial consequence of (2) and (3). (6) is obvious. The rest is trivial.

As in Corollary 6.12, this implies corresponding order-isomorphisms from P1(X)op to

P1(Xop), from
`

P1(X)op to
a

P1(Xop), from
a

P1(X)op to
`

P1(Xop), and finally

from P△
1 (X)op to P△

1 (Xop), when X is a stably bicontinuous bicpo. The resulting

spaces are again stably bicontinuous bicpos. This is a consequence of the above results

and (Goubault-Larrecq, 2008a, Theorem 3, Theorem 6), whose proofs depend on Theo-

rem 7.17 above, but require too much extra machinery to be included here.

Corollary 7.18 (Duality, Forks, Order-Theoretic). Let X be stably compact. For

every normalized fork F = (F−, F+), define F⊥ as (F+⊥, F−⊥). Then F⊥ is a normalized

fork on Xd, and ⊥ defines an involutive order-isomorphism from F1(X)op to F1(Xd).

Proof. The only thing to check is that F⊥ satisfies Walley’s condition. For every h, h′ ∈

〈Xd → R+
σ 〉, with a ≥ supx∈X h(x) and a′ ≥ supx∈X h′(x),

F−⊥(h) + F+⊥(h′) = a + sup
g perfect≪dh

(−F−(a − g)) + a′ + sup
g′ perfect≪dh′

(−F+(a′ − g′))

= a + a′ + sup
g perfect≪dh

g′ perfect≪dh′

(−F−(a − g) − F+(a′ − g′))

≥ a + a′ + sup
g perfect≪dh

g′ perfect≪dh′

(−F+(a + a′ − g − g′))

using the right-hand side of Walley’s condition on (F−, F+). Since addition preserves

and reflects ≪d (Lemma 7.15, Lemma 7.14), the latter equals F+⊥(h + h′). This yields

the left-hand side of Walley’s condition on (F+⊥, F−⊥). The other side is similar.

Again, if X is a stably bicontinuous bicpo, this induces an involutive order-isomorphism

from F1(X)op to F1(Xop). Also, F1(X) is a stably bicontinuous bicpo, as a consequence

of (Goubault-Larrecq, 2008a, Section 6).

The order-theoretic duality above extends to a duality on spaces with their weak

topologies, as before. We observe that ≪ and ≪d are nicely related. Up to some details,

g ≪ g′ iff −g′ ≪d −g:

Lemma 7.19. Let X be stably compact, and write ≪ the way-below relation on 〈X →

R+
σ 〉, ≪

d the way-below relation on 〈Xd → R+
σ 〉.

For all perfect maps g, g′ from X to R+
σ , such that infx∈X g′(x) > 0, for every constant

a such that a ≥ supx∈X g′(x) and a > supx∈X g(x), g ≪ g′ iff a − g′ ≪d a − g.

Proof. Assume g ≪ g′. Since g′ is the sup of the directed family of maps (g′ǫ)ǫ>0, g ≤ g′ǫ
for some ǫ > 0. Pick also ǫ small enough that ǫ < infx∈X g′(x), which is possible since

infx∈X g′(x) > 0. Then g(x) ≤ g′(x) − ǫ for all x ∈ X , so a− g′(x) ≤ a − g(x) − ǫ for all

x ∈ X . So a − g′ ≤ (a − g)ǫ, which implies a − g′ ≪d a − g by Lemma 7.9.
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The converse direction is similar.

We shall also need the following lemma.

Lemma 7.20. Let X be compact. For every bounded continuous map f from X to R+
σ ,

and every a > 0, f ≪ aχX iff f ≤ a′χX for some a′ ∈ R+ with a′ < a.

Proof. Assume f ≪ aχX . Since aχX is the sup of the directed family of all a′χX ,

a′ < a, f ≤ a′χX for some a′ with 0 ≤ a′ < a. Conversely, assume f ≤ a′χX with a′ < a.

Let (fi)i∈I be any directed family of bounded continuous maps having a sup above aχX .

Then (f−1
i (a′, +∞))i∈I is a directed family of opens whose union contains X : for every

x ∈ X , supi∈I fi(x) ≥ a > a′, so x ∈ f−1
i (a′, +∞) for some i ∈ I. Since X is compact,

X is contained in f−1
i (a′, +∞) for some i ∈ I. So, for every x ∈ X , fi(x) > a′ ≥ f(x).

Hence f ≤ fi.

The following theorem is proved using arguments that should be familiar by now, so

we go faster.

Theorem 7.21 (Duality, Previsions, Topological Version). Let X be stably com-

pact, then P1 wk(X),
`

P1 wk(X),
a

P1 wk(X) and P△
1 wk(X) are stably compact, and

F 7→ F⊥ is an involutive homeomorphism:

— from P1 wk(X)d to P1 wk(Xd);

— from
`

P1 wk(X)d to
a

P1 wk(Xd);

— from
a

P1 wk(X)d to
`

P1 wk(Xd);

— from P△
1 wk(X)d to P△

1 wk(Xd).

Proof. For every perfect map h from Xd to R+
σ , and r ∈ R, let Ph≥r be the property

of normalized previsions defined to hold of F iff F̂ (−h) ≥ r.

Consider Z =
∏

f∈〈X→R
+
σ 〉

supx∈X f(x)=1

[0, 1]σ; Z is stably compact. For each z ∈ Z, write zf

the f component of z. For any conjunction P of properties of previsions among “lower”,

“upper”, “linear”, “normalized”, Ph≥r for any h and r as above, let PP (X) be the

space of continuous subnormalized previsions satisfying P , and PP (X) the space of all

subnormalized previsions satisfying P . There is an obvious map e : PP (X) → Z that

sends F to the family of all F (f), f ∈ 〈X → R+
σ 〉, supx∈X f(x) = 1. Conversely, for any

family z = (zf ) f∈〈X→R
+
σ 〉

supx∈X f(x)=1

of elements of [0, 1]σ, one defines a positively homogeneous

functional m(z) from 〈X → R+
σ 〉 to R+

σ by: m(z)(0) = 0, m(z)(f) = azf/a when a =

supx∈X f(x) > 0.

The subspace ZP of Z of those z such that m(z) is a subnormalized prevision satisfying

P is definable by a system of patch-continuous inequalities, with A = [0, 1]σ. We write

the following inequalities, depending on P :

— Monotonic: we would like to write the inequality a × (f/a) ≤̇ b × (g/b), for all

non-identically zero maps f, g ∈ 〈X → R+
σ 〉 such that f ≤ g, where a = supx∈X f(x),

b = supx∈X g(x). This states that m(z)(f) ≤ m(z)(g) for all f ≤ g, when f 6= 0; if

f = 0, m(z)(f) ≤ m(z)(g) always holds. However, the two sides of the inequality may
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fail to be in [0, 1]σ, so we divide the two sides by b—the normalization factor—, and

write a
b × (f/a) ≤̇ (g/b).

— Subnormalized: (a + b)× ((a + f)/(a + b)) ≤̇ a + b× (f/b) for every non-identically

zero f ∈ 〈X → R+
σ 〉 and every a > 0, where b = supx∈X f(x); this states that

m(z)(a+f) ≤ a+m(z)(f) for every f 6= 0; when f = 0, m(z)(a) = a×m(z)(a/a) ≤ a

always holds, and when a = 0, m(z)(f) ≤ m(z)(f) is trivial. We again need to divide

by a normalization factor, here a + b.

— Normalized: turn the above into an equality.

— Lower: a × (f/a) + b × (g/b) ≤̇ c × ((f + g)/c) for all non-identically zero maps

f, g ∈ 〈X → R+
σ 〉, where a = supx∈X f(x), b = supx∈X g(x), c = supx∈X f(x) + g(x).

Again, we need a normalization factor, here a + b.

— Upper: c × ((f + g)/c) ≤̇ a × (f/a) + b × (g/b), up to normalization factor a + b,

for all f, g as above.

— Linear: this just the conjunction of lower and upper.

— Ph≥r: we would like to write a+r ≤̇ (a−b)× ((a−h)/(a−b)) where a = supx∈X h(x),

b = infx∈X h(x), whenever h is not constant, or a + r ≤̇ 0 if h (= a = b) is constant.

This states that a+r ≤ m(z)(a−h), i.e., r ≤ m̂(z)(−h). Again, both sides of the first

equation may fail to be in [0, 1]σ: if 0 ≤ a + r ≤ a− b, we divide by the normalization

factor a − b; if a + r < 0, then write nothing (a + r ≤ m(z)(a − h) always holds); if

a+r > a−b, then write some inconsistent inequality such as 1 ≤̇ 0 (a+r ≤ m(z)(a−h)

never holds).

So ZP is patch-closed in Z, hence stably compact by Proposition 5.5. But e and m form

an homeomorphism between ZP and PP (X), so the latter is stably compact as well.

Next, define r : PP (X) → PP (X) by Scott’s formula: r(F )(f) = suph perfect≪f F (h),

using the fact that perfect maps form a basis (Proposition 7.11). This is continuous

by Lemma 5.7. r(F ) is subnormalized whenever F is: for any constant a and any h ∈

〈X → R+
σ 〉, r(F )(a + h) = supg′′ perfect≪aχX+h F (g′′) = supg perfect≪aχX

g′ perfect≪h

F (g + g′) (since

addition preserves and reflects ≪) ≤ supg′ perfect≪h F (a + g′) ≤ a + r(F )(h).

Next, r(F ) is also normalized whenever F is. r(F )(a+h) = a+r(F )(h) is obvious when

a = 0, so assume a > 0. Among the perfect maps g ≪ aχX , we find the maps of the form

a′χX with 0 ≤ a′ < a, by Lemma 7.20. Then r(F )(a + h) = supg perfect≪aχX

g′ perfect≪h

F (g + g′) ≥

sup a′<a
g′ perfect≪h

F (a′ + g′) = sup a′<a
g′ perfect≪h

(a′ + F (g′)) = a + r(F )(h).

We show that r(F ) is lower, resp. upper, resp. linear, whenever F is, by appealing

again to the fact that addition preserves and reflects ≪.

Finally, if F is normalized and satisfies Ph≥r, where h is perfect from Xd to R+, then

we claim that r(F ) also satisfies Ph≥r. We shall show this under the extra assumption

that infx∈X h(x) > 0: the general case reduces to it, since F satisfies Ph≥r iff F satisfies

Ph+δ≥r−δ for any δ > 0, using the fact that F̂ is normalized (Lemma 7.8), and since

r(F ) satisfies Ph+δ≥r−δ iff it satisfies Ph≥r, by a similar argument (recall from above

that r(F ) is normalized, hence also r̂(F )). So assume infx∈X h(x) > 0. Since F satisfies

Ph≥r, F̂ (−h) ≥ r, i.e., F (a − h) ≥ a + r for some large enough constant a, e.g., one

such that a > supx∈X h(x). For all perfect maps g ≪d h, supg′ perfect≪a−g F (g′) ≥ a + r:
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take indeed g′ = a − h, since by Lemma 7.19 a − h ≪ a − g. We have just shown that

r(F )(a − g) − a ≥ r, i.e., r̂(F )(−g) ≥ r. Since g is perfect, r(F )⊥(g) ≤ −r. As this holds

for every perfect map g ≪d h, and r(F )⊥ is continuous, we also have r(F )⊥(h) ≤ −r.

Since h is perfect, r̂(F )(−h) ≥ r. So r(F ) also satisfies Ph≥r.

Together with the inclusion s : PP (X) → PP (X), PP (X) is a retract of PP (X) by

Lemma 5.10, and is therefore stably compact by Lawson’s Lemma 5.12. In particular,

P1 wk(X),
`

P1 wk(X),
a

P1 wk(X) and P△
1 wk(X) are stably compact.

In any of these spaces Y of continuous normalized previsions, let 〈h ≥ r〉 be the set of

all F ∈ Y such that F⊥(h) ≤ −r, or equivalently F̂ (−h) ≥ r, where h is perfect from

Xd to R+
σ . This is the image by r of the corresponding set of (not necessarily continuous)

normalized previsions satisfying Ph≥r. The above arguments then entail that, in any of

these spaces Y , 〈h ≥ r〉 is a stably compact subspace, hence a compact subset. It is

clearly saturated. It follows that ⊥ is continuous from P1 wk(X)d to P1 wk(Xd)—the

cases of spaces of lower, upper, and linear previsions is similar, and omitted. Indeed,

using Proposition 7.11, a subbasis of the weak topology on P1 wk(Xd) is given by subsets

of the form [h > r], where h is not just continuous, but perfect. The inverse image of

[h > r] by ⊥ is the complement of 〈h ≥ −r〉, which is open in P1 wk(X)d.

We now use an argument that is similar to the one of Proposition 6.8 to establish the

converse result.

Let Q be any compact saturated subset of Y , where Y is any one of the above spaces

of continuous normalized previsions. As a subset of [〈X → R+〉 → R+]p, Q is again

compact. Write ↑Q the upward-closure of Q in [〈X → R+〉 → R+]p. This is compact

saturated. Since 〈X → R+〉 is a continuous poset, Lemma 5.16 applies. so ↑Q is also

compact saturated in [〈X → R+〉 → R+] (i.e., with the Scott topology). The latter is

a bc-domain, hence a continuous dcpo, so ↑Q can be written as filtered intersection of

finitary compacts ↑ E , E finite subset of [〈X → R+〉 → R+].

For any F ∈ E , we claim that ↑F , the upward-closure of F in [〈X → R+〉 → R+], equals⋂
g perfect:Xd→R

+
σ
〈g ≥ F̂ (−g)〉∗, where we write 〈g ≥ r〉∗ for {F ′ ∈ [〈X → R+〉 → R+] |

F̂ ′(−g) ≥ r}. Indeed, if F ′ ∈ ↑F , then for every perfect map g : Xd → R+
σ , −g is perfect

from X to Rσ, so F̂ ′(−g) ≥ F̂ (−g). Conversely, if F ′ ∈
⋂

g perfect:Xd→R
+
σ
〈g ≥ F̂ (−g)〉∗,

then F̂ ′(−g) ≥ F̂ (−g) for all perfect maps g : Xd → R+
σ . This implies that F ′(g′) ≥ F (g′)

for all perfect maps g′ : X → R+
σ (take g = a − g′ for some large enough constant a).

Since the perfect maps form a basis (Proposition 7.11), and F and F ′ are continuous,

F ′ ∈ ↑F .

So ↑ E is a finite union of intersections of sets of the form 〈g ≥ r〉∗. Therefore ↑Q, as a

filtered intersection of such sets ↑ E , is an intersection of finite unions of sets of the form

〈g ≥ r〉∗. It is easy to see that Q = ↑Q∩Y , and that 〈g ≥ r〉∗ ∩Y = 〈g ≥ r〉, so that the

cocompact topology on Y is exactly generated by the complements of the sets 〈g ≥ r〉,

where g ranges over the perfect maps from Xd to R+, r ∈ R. Again using the fact that

the weak topologies are generated by subsets of the form [h > r], h perfect, we conclude

that ⊥ is continuous from P1 wk(Xd) to P1 wk(X)d, and similarly for spaces of lower,

upper, and linear normalized previsions.

Corollary 7.22 (Duality, Forks, Topological Version). Let X be stably compact.
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F1 wk(X) is a stably compact space, and ⊥, as defined in Corollary 7.18, defines an

involutive order-isomorphism from F1(X)d to F1(Xd).

Proof. Taking some notations from the proof of Theorem 7.21, F1 wk(X) arises as a

retract of the subspace Fk of ZZ = Z“lower”, “normalized” × Z“upper”, “normalized” defined

by the image of Walley’s condition F−(h + h′) ≤ F−(h) + F+(h′) ≤ F+(h + h′) through

the isomorphism defined by e × e and m × m. That is, Fk is the set of those (z−, z+) ∈

ZZ such that, for all non-identically zero h, h′ ∈ 〈X → R+
σ 〉, with a = supx∈X h(x),

a′ = supx∈X h′(x), (a + a′) × z−(h+h′)/(a+a′) ≤ az−h/a + a′z+
h′/a′ ≤ (a + a′)× z+

(h+h′)/(a+a′),

and such that for every h ∈ 〈X → R+
σ 〉 with supx∈X h(x) = 1, z−h ≤ z+

h . It is an easy

exercise to show that Fk is patch-closed in ZZ, hence stably compact; this works as for

Proposition 5.5. It follows that F1 wk(X) is stably compact, by Lawson’s Lemma 5.12.

Now ⊥ maps normalized forks to normalized forks by Corollary 7.18. The rest of the

Corollary is an easy consequence of Theorem 7.21.

We finally observe that the duality F 7→ F⊥ on spaces of continuous normalized

previsions extends the duality ν 7→ ν⊥ on spaces of continuous normalized games. Recall

that one can define the Choquet integral C
∫

x∈X
g(x)dν of a bounded continuous map

g : X → R, not necessarily with non-negative values, as α̂C(ν)(g), i.e., as −a + C
∫

x∈X a +

g(x)dν for a ≥ − infx∈X g(x).

Proposition 7.23. Let X be stably compact. For every continuous normalized prevision

F on X , γC(F⊥) = γC(F )⊥. For every continuous normalized game ν on X , αC(ν)⊥ =

αC(ν⊥). In fact, for any perfect map g : X → R+,

C

∫

x∈Xd

−g(x)dν⊥ = − C

∫

x∈X

g(x)dν (2)

Proof. For every cocompact subset X\Q of X , γC(F )⊥(X\Q) = 1−infU open⊇Q F (χU ).

On the other hand, γC(F⊥)(X \ Q) = F⊥(χX\Q) = supg perfect≪dχX\Q
−F̂ (−g).

For any open subset U containing Q, by Lemma 7.10, there is a perfect map g′ :

X → [0, 1]σ such that χQ ≤ g′ ≤ χU . Take g = 1 − g′: then −F̂ (−g) = −F (g′) + 1 ≥

−F (χU ) + 1. Taking sups yields supg perfect≤χX\Q
−F̂ (−g) ≥ γC(F )⊥(X \ Q). However,

supg perfect≤χX\Q
−F̂ (−g) = supg perfect≤χX\Q

F⊥(g) = F⊥(χX\Q) = γC(F⊥)(X \ Q),

since F⊥ is continuous.

Conversely, let U ′ be the open subset of Xd defined as X \ Q. Since Xd is locally

compact, U ′ is the directed union of all interiors (in Xd), intd(Q′), of compact saturated

subsets Q′ of Xd such that Q′ ⊆ U ′. In particular, χU ′ = χX\Q is the sup of the directed

family of all χintd(Q′), Q′ as above. So, for each perfect map g : Xd → R+
σ such that

g ≪d χX\Q, there is a Q′ ⊆ U ′ as above such that g ≤ χintd(Q′) ⊆ χQ′ . Let U be the

complement of Q′: we have found an open U of X containing Q, and such that g ≤ χX\U .

Then −F̂ (−g) ≤ 1−F (χU ). Taking sups, γC(F⊥)(X \Q) ≤ γC(F )⊥(X \Q), whence the

equality.
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We now prove (2). On the one hand, letting a ≥ supx∈X g(x),

− C

∫

x∈Xd

−g(x)dν⊥ = a − C

∫

x∈Xd

(a − g(x))dν⊥

= a −

∫ a

0

ν⊥((a − g)−1(t, +∞))dt

= a −

∫ a

0

ν⊥(X \ g−1[a − t, +∞))dt =

∫ a

0

ν†(g−1[a − t, +∞))dt

On the other hand,

C

∫

x∈X

g(x)dν =

∫ a

0

ν(g−1(t, +∞))dt =

∫ a

0

ν(g−1(a − t, +∞))dt

Observe that g−1(a−t, +∞) ⊆ g−1[a−t, +∞). So every open subset U containing g−1[a−

t, +∞) also contains g−1(a − t, +∞), whence ν(g−1(a − t, +∞)) ≤ ν†(g−1[a − t, +∞)).

So C
∫

x∈X
g(x)dν ≤ − C

∫
x∈Xd −g(x)dν⊥. Conversely, for every ǫ > 0, g−1[a − t, +∞) is

contained in the open g−1(a− t− ǫ, +∞), so ν†(g−1[a− t, +∞)) ≤ ν(g−1(a− t− ǫ, +∞)).

We deduce that:

− C

∫

x∈Xd

−g(x)dν⊥ ≤

∫ a

0

ν(g−1(a − t − ǫ, +∞))dt

=

∫ a−ǫ

0

ν(g−1(a − t − ǫ, +∞))dt + ǫν(X)

=

∫ a

ǫ

ν(g−1(a − t, +∞))dt + ǫν(X) ≤ C

∫

x∈X

g(x)dν + ǫν(X)

As ǫ > 0 is arbitrary, − C
∫

x∈Xd −g(x)dν⊥ ≤ C
∫

x∈X g(x)dν, from which (2) follows.

We now realize that the left-hand side of (2) is α̂C(ν⊥)(−g) = −αC(ν⊥)⊥(g), while

the right-hand side is −αC(ν)(g). So αC(ν⊥)⊥ and αC(ν) coincide on all perfect maps

g : X → R+. By Proposition 7.11 they are the same prevision. Replacing ν by ν⊥ and

using the fact that ν⊥⊥ = ν, we obtain αC(ν)⊥ = αC(ν⊥).

8. Conclusion

We hope to have demonstrated that convex-concave duality is a beautiful family of dual-

ities that extend de Groot duality to various domains of non-deterministic, probabilistic,

and mixed choice. This uncovers a hidden symmetry in powerdomains, whereby angels

and demons trade places, while nature remains intact.
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We thank Mart́ın Escardó for the alternative proof of Theorem 3.1 and its extensions,

Klaus Keimel for directing me to Ben Cohen’s work, and both Klaus Keimel and Jimmie

Lawson for fruitful comments. We also thank the anonymous referees for their extraor-

dinarily detailed and deep comments. One of the referees found a crucial mistake in a



J. Goubault-Larrecq 58

former version of Theorem 6.18, and both found some other mistakes as well. Both ref-

erees suggested a number of alternative proof arguments, among other things. I have

mentioned some of them explicitly in the text. The idea of using approximations by

perfect maps in Section 7 is also due to one of the anonymous referees, resulting in a

considerable simplification of my original argument.

References

Abramsky, S. and Jung, A. (1994). Domain theory. In Abramsky, S., Gabbay, D. M.,

and Maibaum, T. S. E., editors, Handbook of Logic in Computer Science, volume 3,

pages 1–168. Oxford University Press.
Alvarez-Manilla, M. (2000). Measure Theoretic Results for Continuous Valuations on

Partially Ordered Spaces. PhD thesis, University of London and Imperial College.
Alvarez-Manilla, M., Jung, A., and Keimel, K. (2004). The probabilistic powerdomain

for stably compact spaces. Theoretical Computer Science, 328(3):221–244.
Choquet, G. (1953–54). Theory of capacities. Annales de l’Institut Fourier, 5:131–295.
Cohen, B. S. (2006). Mathematical Foundations for Denotational Semantics for Com-

bining Probability and Nondeterminism over Stably Compact Spaces. Diplomarbeit,
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