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We present a method for constructing from a given domain representation of a space X,

with underlying domain D, a domain representation of a subspace of compact subsets of

X where the underlying domain is the Plotkin powerdomain of D. We show that this

operation is functorial over a category of domain representations with a natural choice of

morphisms. We study the topological properties of the space of representable compact

sets and isolate conditions under which all compact subsets of X are representable.

Special attention is paid to admissible representations and representations of metric

spaces.

1. Introduction

Scott domains (Scott 1970) provide denotational semantics for a wide range of program-
ming languages and carry a natural notion of computability (Ershov 1977). Using domain
representations (Blanck 2000; Stoltenberg-Hansen and Tucker 1995; Stoltenberg-Hansen
and Tucker 2008), the domain-theoretic notion of computability can be extended to a
large class of topological spaces, moreover, important classes of topological spaces can
be characterised by the kind of domain representations they admit (Hamrin 2005). In
addition to modelling computability, domains can be used to model nondeterminism by
means of powerdomains (Gierz et al. 2003). In this paper we extend Plotkin’s powerdo-
main construction (Plotkin 1983) (also known as the convex powerdomain) to domain
representations. This amounts to implementing an effective notion of nondeterminism on
a large class of topological spaces.

Here is a sketch of the construction: A domain in this paper will be a countably based
algebraic cpo. A domain representation of a topological space X is a pair (D, δ) where D
is a domain, DR is a subset of D regarded as a topological space with the relativised Scott
topology, and δ : DR → X is a quotient map. For simplicity of the sketch, let us assume
that DR is upwards closed in the domain ordering and X is Hausdorff. ¿From such a
domain representation we construct the powerdomain representation (P(D), δP) where
P(D) is the Plotkin powerdomain. We use a result by Smyth (Smyth 1983) according to
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which P(D) can be modelled as the space of lenses, i.e. nonempty compact subsets of
D which are the intersection of a closed and a saturated set, with the Vietoris topology.
The function δP : P(D)R → P(X) is defined on P(D)R = {K ∈ P(D)|K ⊆ DR} by
δP(K) := δ[K]. The powerspace P(X) is simply the image of P(D)R under δP with the
quotient topology. The elements of P(X) are certain non-empty compact subsets of X
which we call representable.

Our main results can be summarised as follows:

(1) The construction of the powerdomain representation defines an endofunctor on the
category of domain representations.

(2) The representable sets have good closure properties, and in many interesting cases
(e.g. retract representations, total continuous functionals) all non-empty compact sets
are representable (modulo T0), although this does not hold in general.

(3) For admissible domain representations the powerspace is independent of the rep-
resentation and hence defines an operation on the topological spaces admitting an
admissible representation, i.e., on the class of qcb0-spaces.

(4) Many properties of spaces and representations are preserved by the powerdomain
representation, for example, density, retract, Hausdorff, qcb0.

(5) Representations of metric spaces lift to representations of the powerspace with the
Hausdorff metric. This generalises previous results in (Blanck 1999).

Smyth’s characterisation of the Plotkin powerdomain mentioned above is crucial for
our work. It allows us to render most proofs very short and in general topological terms
hardly ever using domain-theoretic arguments. Applying the T0-collapse not only to the
representing domain, but also to the represented space, allows us to smoothly include
non-Hausdorff spaces X in our construction.

Although we do not discuss computability aspects explicitely it is clear from the con-
structions and proofs that all results hold effectively. The closure properties of repre-
sentable compact sets hold effectively, and so does the lifting of metric spaces. Further-
more, the Plotkin powerdomain construction preserves effectivity, and the coincidence of
the Scott topology and the Vietoris topology on the Plotkin powerdomain is given by
computable transformations of the respective basic open sets.

The plan of the paper is as follows: In section 2 we introduce the basic notions of domain
theory and topology which we will use. In section 3 we look at some important results
concerning operations on lenses which will be useful at a later stage. Then, in section 4,
we present our construction of the powerdomain representation and study some basic
preservation properties. The powerdomain representation gives us a natural notion of
a representable compact subset of a topological space, given a domain representation
of it, and more generally a representable lens. We study this notion in more detail in
section 5. In section 6, we investigate what topological properties of the represented space
are preserved by our construction. Finally, in section 7, we look at the important case of
a domain representation of a complete metric space.



Domain Representations of Spaces of Compact Subsets 3

2. Background

2.1. Basic domain theory

It is well-known that domains (i.e. countably based algebraic cpos) are closed under
Plotkin’s power domain construction. Restricting further to the class of sfp-domains
would give Cartesian closure, but this is not used in the paper. The restriction to count-
ably based domains is useful for characterising the elements of the power domain. For
background material on domains we refer to (Abramsky-Jung 1994; Gierz et al. 2003;
Stoltenberg-Hansen et al. 1994).

2.2. Domain representations

Some basic definitions. We refer to (Blanck 2000; Stoltenberg-Hansen and Tucker 2008)
for more on domain representations.

A domain with totality is a pair (D,DR), with D a domain (with the Scott topology)
and DR a subspace of the domain (with the subspace topology). A domain representation
is a pair (D, δ : DR → X) such that (D,DR) is a domain with totality, X a topological
space and δ is a quotient map. The representation (D, δ) is dense if DR is topologically
dense in D.

Let (D, δ : DR → X) and (E, ε : ER → Y ) be domain representations. A representation
morphism (or a (δ, ε)-total map)

f : (D, δ)→ (E, ε)

is a continuous map f : D → E

X Y

DR ER

D E

δ

ι

ε

ι

f

f |DR

g

such that

(i) f [DR] ⊆ ER; and
(ii) δ(x) = δ(y)⇒ ε(f(x)) = ε(f(y)) for all x, y ∈ DR.

The representation morphism induces a unique continuous function g : X → Y which
satisfies g ◦ δ = ε ◦ f |DR .

A domain representation (D, δ) is retract if there exists a continuous s : X → DR such
that δ ◦ s = idX . A topological space has a dense, retract representation if and only if it
is a second countable T0 space (Blanck 2000).

A domain representation (E, ε) of X is admissible if for every domain with dense
totality (D,DR) and continuous function ϕ : DR → X, there exists a continuous map
ϕ̂ : D → E such that ϕ̂[DR] ⊆ ER and ε(ϕ̂(x)) = ϕ(x) for every x ∈ DR (Hamrin 2005).
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¿From a given admissible domain representation of X one can easily construct an
admissible representation over a consistently complete domain. Moreover, an admissible
representation can be chosen to be dense. A topological space X has a dense admissible
representation if and only if it is a sequential T0 space with a countable pseudobase
(Hamrin 2005), which again is equivalent to X being a qcb0 space (Schröder 2003).

Let (D, δ) and (E, ε) be domain representations of a space X. A continuous reduc-
tion of (D, δ) to (E, ε) is a continuous map f : D → E that induces the identity on
X. Continuous reductions induce a preorder on domain representations. The notion of
admissible domain representation is equivalent to being largest among dense domain rep-
resentations with respect to the preorder of continuous reductions. This characterisation
of admissibility also holds for other classes of representations, such as TTE (Weihrauch
2000) representations. The retract property is preserved by continuous reductions. This
means that the retract property also is a notion of largeness under continuous reductions.
Among domain representations, there is a close but subtle connection between retract
representations and admissible representations (Blanck 2008). Retract domain represen-
tations of spaces are an important and common type of representations, and, as we will
see, our power space construction preserves the retract property.

2.3. Topology and the specialisation order

Let X = (X, τ) be a topological space. The specialisation order, ≤, on X is given by

x ≤ y ⇐⇒ (∀U ∈ τ)(x ∈ U ⇒ y ∈ U).

It is easy to see that the specialisation order is a preorder. If X is T0, then the spe-
cialisation order is antisymmetric and therefore a partial order. If X is T1, then the
specialisation order is discrete, i.e., x ≤ y ⇒ x = y. For a domain the specialisation
order, ≤, coincides with the domain ordering, v.

Let A ⊆ X. We define the upper and lower set with respect to the specialisation order
by

↑A = {x ∈ X : (∃a ∈ A)(a ≤ x)}, and

↓A = {x ∈ X : (∃a ∈ A)(x ≤ a)}.

Note that an open set must be an upper set and a closed set must be a lower set, with
respect to the specialisation order.

The topological saturation of A, i.e., the intersection of all open neighbourhoods of A,
coincides with ↑A. The topological closure, i.e., the intersection of all closed sets containing
A, is denoted by A. We have ↓A ⊆ A, but this may, in general, be a strict inclusion.

By H(X) we denote the set of non-empty compact subsets of X.
A lens is a non-empty subset of X which can be written as the intersection of a closed

set and a compact saturated set. A lens L ⊆ X is itself compact and has a canonical
representation of the form L = L ∩ ↑L. Let Lens(X) be the set of lenses in X. Clearly,
Lens(X) ⊆ H(X), and equality holds if X is a T1 space.

For a non-empty compactK ⊆ X, we define the lens closure ofK as the setK∩↑K, and
we denote it by 〈K〉X . Clearly, lens closure is an operator 〈·〉X : H(X)→ Lens(X). The
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lens closure 〈K〉X is the smallest lens containing K, and in particular 〈〈K〉X〉X = 〈K〉X .
If X is T1, then 〈K〉X = K. For a non-empty finite (and hence compact) set A we have
〈A〉X = ↓A ∩ ↑A = the least convex set containing A.

Let A and B be non-empty subsets of X. The Egli-Milner (pre)ordering is defined by

A vEM B ⇔ A ⊆ ↓B ∧B ⊆ ↑A.

Finite sets A and B are equivalent w.r.t. vEM if and only if 〈A〉X = 〈B〉X .
The topological Egli-Milner (pre)ordering is defined by

A vTEM B ⇔ A ⊆ B ∧B ⊆ ↑A.

Arbitrary non-empty compact sets A and B are equivalent w.r.t. vTEM if and only if
〈A〉X = 〈B〉X .

2.4. Vietoris topology

Let X be a topological space. If U ⊆ X is open, let U∩ be the set of compacts K ⊆ X

with K ∩U 6= ∅ and let U⊇ be the set of non-empty compacts K ⊆ X with K ⊆ U . The
Vietoris topology on H(X) is the topology generated by subbasic open sets U∩ and U⊇
for all open U ⊆ X.

We consider H(X) as a topological space with the Vietoris topology, and Lens(X) as
a subspace of H(X).

Lemma 2.1. The space Lens(X) is the T0-collapse of H(X) via the collapsing map 〈·〉X .

Proof. If K1 and K2 have the same set of subbasic neighbourhoods of the form U∩,
then K1 = K2. If K1 and K2 have the same subbasic neighbourhoods of the form U⊇,
then ↑K1 = ↑K2. Thus, if K1 and K2 are indistinguishable in the Vietoris topology, then
〈K1〉X = 〈K2〉X .

We have 〈K〉X ∈ U∩ ⇐⇒ K ∈ U∩ since 〈K〉X ⊆ K, furthermore 〈K〉X ∈ U⊇ ⇐⇒
K ∈ U⊇ since 〈K〉X ⊆ ↑K. So K and 〈K〉X are indistinguishable in the Vietoris topology.
Thus, if 〈K1〉X = 〈K2〉X then K1 and K2 are indistinguishable since they are both
indistinguishable from their common lens closure.

Lemma 2.2. Let X be a Hausdorff space. Then H(X) = Lens(X) is a Hausdorff space.

Proof. Choose non-empty compact subsets K1,K2 ⊆ X and assume K2 \K1 6= ∅.
Choose x ∈ K2\K1. Since X satisfies the Hausdorff separation axiom, there are disjoint

open neighbourhoods U and V of x and K1, respectively. Then K2 ∈ U∩ and K1 ∈ V⊇,
and U∩ and V⊇ are disjoint since U and V are disjoint.

3. More on lenses

Our interest in spaces of lenses is the following characterisation of the Plotkin powerdo-
main as a space of lenses.

Let D be a domain, and recall that we have assumed that our domains are countably
based. Hence, by a result of Smyth (Smyth 1983, Theorem 3) we may identify the Plotkin
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powerdomain P(D) with the topological space Lens(D). We will use both notations de-
pending on context. The specialisation order on Lens(D) is vTEM. The compact elements
of the powerdomain are lenses generated by finite sets.

Although we will apply the results of this section to domains only, we have chosen to
present the fully general situation here.

3.1. Functoriality of H(·) and Lens(·)

If f : X → Y is continuous, let fH be the map which sends a non-empty compact set
K ⊆ X to the non-empty compact set f [K] ⊆ Y .

Lemma 3.1.

(i) The function fH : (H(X);vTEM)→ (H(Y );vTEM) is monotone.
(ii) In particular, for every K ∈ H(K), we have 〈f [K]〉Y = 〈f [〈K〉X ]〉Y .

Proof. (ii) follows from the (i) since 〈K〉X ≡TEM K.
Assume K vTEM K ′. Let U ⊆ Y be an open set containing f(x) for some x ∈ K. By

assumption, K ⊆ K ′, so f−1[U ] intersects the closure K ′ and therefore also K ′. Hence,
f [K] ⊆ f [K ′]. To show that f [K ′] ⊆ ↑f [K] we show that every open neighbourhood of
f [K] contains f [K ′]. Let U ⊇ f [K] be open. Then f−1[U ] ⊇ K is open, and therefore
f−1[U ] ⊇ K ′. Thus, U ⊇ f [K ′]. We have shown f [K] vTEM f [K ′].

Let f : X → Y be a continuous map. We define the lifting of f to the lens spaces,
fL : Lens(X)→ Lens(Y ), by fL(L) = 〈f [L]〉Y .

Lemma 3.2. idL = id and (g ◦ f)L = gL ◦ fL, where f : X → Y and g : Y → Z.

Proof. The first assertion is obvious. For the second, let L ∈ Lens(X). By Lemma 3.1(ii)
we have (g ◦ f)L(L) = 〈g[f [L]]〉Z = 〈g[〈f [L]〉Y ]〉Z = (gL ◦ fL)(L).

The next two results imply that fL is continuous.

Proposition 3.3. fH : H(X)→ H(Y ) is continuous.

Proof. We show that (fH)−1 maps Vietoris basic opens in Y to Vietoris basic opens
in X. Let U ⊆ Y be open. Clearly, U ∩ f [K] 6= ∅ iff f−1[U ] ∩K 6= ∅, and U ⊇ f [K] iff
f−1[U ] ⊇ K. Therefore, (fH)−1[U∩] = (f−1[U ])∩ and (fH)−1[U⊇] = (f−1[U ])⊇.

We consider Lens(X) as a subspace of the topological space H(X) with the Vietoris
topology.

Proposition 3.4. fL : Lens(X)→ Lens(Y ) is continuous.

Proof. Recall that fL = 〈·〉Y ◦ fH|Lens(X), which is a composition of continuous maps,
by Lemma 2.1 and Proposition 3.3.

Specialising Proposition 3.4 to domains we obtain that the Plotkin powerdomain op-
eration defines an endofunctor over the category of domains with continuous functions
as morphisms, as shown in (Abramsky-Jung 1994; Gierz et al. 2003).
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Corollary 3.5. Let D,E be domains and f : D → E continuous. Then fL : P(D) →
P(E) is continuous.

3.2. Lenses over a subspace

Here we will look at the lenses over a subspace and identify these as a subset of the lenses
over the full space. The motivation for this is the subset DR of representing elements
of a domain representation (D, δ : DR → X). However, since the results are purely
topological the exposition will use general topological spaces.

Let X be a topological space and Y be a non-empty subspace of X with the relative
topology. Recall that the lens spaces Lens(X) and Lens(Y ) are considered as topological
spaces with the Vietoris topology.

Lemma 3.6. Let K ⊆ Y be non-empty and compact.

(i) 〈K〉Y = 〈K〉X ∩ Y .
(ii) 〈K〉X = 〈〈K〉Y 〉X

Proof.

(i)A straightforward exercise for the reader using that open sets in Y are relativised
open sets in X.

(ii)Clearly, K ⊆ 〈K〉Y and by (i) 〈K〉Y ⊆ 〈K〉X . Applying the monotone lens operator
we get 〈K〉X ⊆ 〈〈K〉Y 〉X ⊆ 〈〈K〉X〉X = 〈K〉X . The statement can also be viewed as
a special case of Lemma 3.1 (ii).

The inclusion function ι : Y → X is continuous so the map ιL : Lens(Y )→ Lens(X) is
continuous by Proposition 3.4. We say that the subspace ιL[Lens(Y )] of lenses in Lens(X)
are the Y -generated lenses and denote them by Y - Lens(X).

Lemma 3.7. Let L be a Y -generated lens, i.e., L = 〈M〉X for some lens M ⊆ Y . Then
L ∩ Y = M ∈ Lens(Y ) and L = 〈L ∩ Y 〉X .

Proof. Clearly, M ⊆ L ∩ Y . Suppose y ∈ Y belongs to 〈M〉X . Then y belongs to the
saturation and the closure of M in X, and, a fortiori, y belongs to the saturation and
the closure of M in Y , implying that y ∈M . Hence, L ∩ Y = M . Thus,

L = 〈M〉X = 〈L ∩ Y 〉X ⊆ 〈L〉X = L.

Theorem 3.8. Let Y be a non-empty subspace of X. Then Y - Lens(X) ∼= Lens(Y ).

Proof. Let f : Y - Lens(X)→ Lens(Y ) be defined by f(L) = L ∩ Y . The function f is
well-defined by Lemma 3.7. By Lemma 3.6 we have f ◦ ιL(L) = 〈L〉X ∩ Y = 〈L〉Y = L,
for all L ∈ Lens(Y ), so f ◦ ιL = id. By Lemma 3.7 we have ιL ◦ f(L) = 〈L ∩ Y 〉X = L,
for all L ∈ Y - Lens(X), so ιL ◦ f = id.

We have already established the continuity of ιL so all that remains to show is the
continuity of f . Let V be an open set in Y , and let U be some open set in X such that
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V = U ∩ Y . We will show that the inverse image under f of the subbasic open sets V∩
and V⊇ are U∩ and U⊇ respectively.

Let L ∈ Y - Lens(X). We have

L ∈ f−1[V∩] ⇐⇒ (L ∩ Y ) ∩ V 6= ∅ ⇐⇒ L ∩ V 6= ∅ =⇒ L ∩ U 6= ∅,

that is, L ∈ U∩. Going the other way we have L ∩ U 6= ∅ implies (L ∩ Y ) ∩ U 6= ∅ since
L ⊆ L ∩ Y . But L∩ Y ⊆ Y , so (L∩ Y )∩ V 6= ∅. The latter is equivalent to L ∈ f−1[V∩].

We also have L ∈ f−1[V⊇] ⇐⇒ L∩ Y ⊆ V , which implies L ⊆ U since L ⊆ ↑(L∩ Y ),
that is L ∈ U⊇. Going the other way we have L ⊆ U =⇒ L ∩ Y ⊆ U ∩ Y = V , showing
that L ∈ f−1[V⊇].

Lemma 3.9. Let Y be a dense subspace of X. Then Y - Lens(X) is a dense subspace of
Lens(X).

Proof. Let L belong to a basic open set. The basic open sets of the Vietoris topology
are finite intersections of the form U1∩ ∩ · · ·Un∩ ∩ V⊇. Since L ⊆ V and L ∩ Ui 6= ∅ it
must be the case that V ∩Ui is a non-empty open set. Since Y is dense in X there exists
a point yi ∈ Y such that yi ∈ V ∩ Ui. The finite set S = {y1, . . . , yn} is a subset of V so
the Y -generated lens L′ = 〈S〉X is also a subset of V . The point yi ∈ L′ witnesses that
L′ ∩ Ui 6= ∅, so L′ ∈ U1∩ ∩ · · ·Un∩ ∩ V⊇.

4. A powerdomain representation

Let (D, δ : DR → X) be a domain representation. Recall that the Plotkin powerdomain
P(D) can be identified with Lens(D).

Definition 4.1. A lens L ∈ P(D) is total if it is DR-generated. Let P(D)R denote the
subspace of total lenses, i.e., the space DR- Lens(D).

By Theorem 3.8 we have that

Lens(DR) ∼= P(D)R.

Thus, the choice of totality is essentially forced upon us. The map δL : Lens(DR) →
Lens(X) is a continuous map by Proposition 3.4. Define δP : P(D)R → Lens(X) by
composition of δL with the homeomorphism above, i.e., δP(L) = δL(L ∩ DR). Being a
composition of continuous maps, δP is also continuous.

Definition 4.2. Let (D, δ : DR → X) be a domain representation.

(i) Let P(D,δ)(X) = δP [P(D)R] be the topological quotient with respect to δP .
(ii) Let P(D, δ) denote the pair (P(D), δP : P(D)R → P(D,δ)(X)).
(iii) A subset A ⊆ X is (D, δ)-representable, or simply representable, if A ∈ P(D,δ)(X).

Proposition 4.3. Let (D, δ : DR → X) be a domain representation. Then P(D, δ) is a
domain representation.

Proof. As P(D,δ)(X) is given the quotient topology there is nothing further to be
shown.
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Note that the topology on P(D,δ)(X) is finer than the Vietoris topology since δP :
P(D)R → Lens(X) is continuous and P(D,δ)(X) ⊆ Lens(X) is given the quotient topol-
ogy.

Example 4.4. The simplest example of a domain representation is the identity map id :
D → D on a domain D. Then P(D,id)(D) is homeomorphic to the Plotkin powerdomain
over D via idP .

The following proposition is the main technical step in showing the functoriality of the
powerspace operator P.

Proposition 4.5. Let f : (D, δ : DR → X) → (E, ε : ER → Y ) be a representation
morphism. Then fL : P(D, δ)→ P(E, ε) is a representation morphism.

Proof. By assumption, the left hand diagram commutes. We will show that the right
hand diagram commutes as well.

X Y

DR ER

D E

δ

ι

ε

ι

f

f |DR

g
P(D,δ)(X) P(E,ε)(Y )

P(D)R P(E)R

P(D) P(E)

δP

ι

εP

ι

fL

fL|P(D)R

gL

The intention is that the lens lifting of the domain function should be the representation
morphism. However, the lens lifting can be applied to two different but related maps,
namely, f and f |DR . The different lens liftings need to be related to show that elements
of P(D)R are mapped to P(E)R. Let L ∈ P(D)R, i.e., there exists M ⊆ DR such that
L = 〈M〉D.

fL(L) = fL(〈M〉D)

= 〈f [〈M〉D]〉E (by definition of fL)

= 〈f [M ]〉E (by Lemma 3.1(ii))

= 〈f |DR [M ]〉E (M ⊆ DR)

= 〈〈f |DR [M ]〉ER〉E (by Lemma 3.6(ii))

= 〈(f |DR)L(M)〉E . (by definition of (f |DR)L)

From either of the last two lines it is clear that fL(L) ∈ ER- Lens(E) = P(E)R.
Let g : X → Y be the unique continuous map such that g ◦ δ = ε ◦ f |DR . Now, let
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L ∈ P(D)R, i.e., there exists M ⊆ DR such that L = 〈M〉D.

gL(δP(L)) = gL(δL(M))

= (g ◦ δ)L(M) by Lemma 3.2

= 〈g ◦ δ[M ]〉Y
= 〈ε ◦ f |DR [M ]〉Y by assumption

= εL(〈f |DR [M ]〉ER)

= εP(〈〈f |DR [M ]〉ER〉E)

= εP(fL(L)) . by derivation above

Showing that fL : P(D)→ P(E) represents gL : P(D,δ)(X)→ P(E,ε)(Y ).

Let (D, δ) and (E, ε) be domain representations of X. If f : D → E is a continuous
reduction and P(D,δ)(X) = P(E,ε)(X), then fL : P(D)→ P(E) is a continuous reduction.

Theorem 4.6. The powerspace operator P is an endofunctor over the category of do-
main representations with representation morphisms.

Proof. If f : (D, δ) → (E, ε) is a representation morphism, then by Proposition 4.5
P(f) = fL is a representation morphism from P(D, δ) to P(E, ε). Functoriality holds by
Lemma 3.2.

5. Representable subsets

Let (D, δ : DR → X) be a domain representation. We study which subsets of X are
representable.

The following lemma shows that nothing further would be representable even if we re-
laxed our totality to arbitrary non-empty compact subsets of DR instead of DR-generated
lenses.

Lemma 5.1. If A = 〈δ[K]〉X for some non-empty compact set K ⊆ DR, then A is
representable.

Proof. The lens 〈K〉D is DR-generated. Thus,

δP(〈K〉D) = δL(〈K〉D ∩DR) = δL(〈K〉DR) = 〈δ[〈K〉DR ]〉X = 〈δ[K]〉X = A.

The penultimate equation holds by Lemma 3.1 (ii).

Lemma 5.2. If A1, . . . , An are representable, then 〈
⋃n
i=1Ai〉X is representable.

Proof. Assume that Li ∈ P(D)R satisfies δP(Li) = Ai, for 1 ≤ i ≤ n. Let A =
⋃n
i=1Ai,

and L = 〈
⋃n
i=1 Li〉D. Then δ[↑L∩DR] ⊆ ↑A by monotonicity of δ w.r.t. the specialisation

order, and δ[L ∩ DR] ⊆ A by continuity of δ. Hence, A ⊆ δ[L ∩ DR] ⊆ 〈A〉X , i.e.,
〈A〉X = 〈δ[L ∩DR]〉X = δP(L).

Lemma 5.3. Any finitely generated lens A ⊆ X is representable.
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Proof. Any singleton set {x} is representable since we may choose any d ∈ δ−1(x), and
clearly δP({d}) = {x}. The result now follows from Lemma 5.2.

Example 5.4. Let X be a discrete space, so Lens(X) = ℘∗f (X), the set of finite non-
empty subsets of X. By Lemma 5.3, every finite non-empty set is representable. Hence,
P(D,δ)(X) = ℘∗f (X) = Lens(X).

Lemma 5.5. Non-empty relatively closed subsets of representable sets are representable.

Proof. Let L ∈ P(D)R and A = δP(L). Let C be a closed set intersecting A. By
continuity δ−1[C] is closed in DR. The lens L′ = 〈L ∩ δ−1[C]〉D is DR-generated and
δP(L′) = A ∩ C.

For the class of retract representations we can show that all lenses are representable.

Lemma 5.6. Let (D, δ : DR → X) be a retract representation. Then P(D,δ)(X) =
Lens(X), and the topologies coincide.

Proof. Let s : X → DR be a continuous map such that δ ◦ s = idX , and let A ⊆ X be
a lens. Then

δL(sL(A)) = δL(〈s[A]〉D) = 〈δ[s[A]]〉X = 〈A〉X = A.

Since δL ◦ sL : Lens(X) → P(D,δ)(X) is continuous it follows that the topology on
Lens(X) is finer than the topology on P(X). But, since the other direction is known in
general, we have that the two topologies must coincide.

According to (Escardó et al. 2004), a compact qcb space X with the Hausdorff property
is countably based. In this case, there exists a dense, retract representation (D, δ : DR →
X) (see (Blanck 2000)), and therefore, by Lemma 5.6, all compact subsets of X are
(D, δ)-representable and the induced topology coincides with the Vietoris topology.

The following example shows that there are domain representations for which not all
lenses are representable. It also shows that representability depends on the underlying
domain representation.

Example 5.7. Let X be the natural numbers N with the order topology (Alexandroff
topology) given by the usual ordering on N. The open sets in this topology are the infinite
intervals [n,∞), for n ∈ N. The lenses over X are finite or infinite intervals of natural
numbers. We note that X is T0, but neither T1 nor sober; it is also not a cpo.

We construct a domain representation of X. Let D be the domain

⊥

b1

a0

b2

a1

b3

a2

bn+1

an. . . . . .
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Let DR = D \ {⊥}, and define the representation map δ : DR → X by

δ(ai) = δ(bi) = i.

It is easy to see that δ is continuous. We need to verify that it is a quotient map. Let
A ⊆ X be such that its pre-image U = δ−1[A] is open in DR. If n ∈ A then an ∈ U , and
since U is open bn+1 ∈ U , and hence, n+ 1 ∈ A. Thus, A must be an interval [n,∞) for
some n, showing that δ is a quotient map.

Clearly, there cannot exist a continuous section s : X → DR, so (D, δ) is not a retract
domain representation.

Let K ⊆ DR be compact. Then K must be finite. The lens closure 〈K〉D is also finite.
Thus, all total lenses in P(D, δ) are finite. The image of 〈K〉D under δP will be a finite
interval. That is, the space P(D,δ)(X) only consists of finite intervals.

As a contrast we construct a retract domain representation such that all lenses over
X are representable. Let E be the ideal completion of (N,≤). Let ER be the set of
compact elements. Let the representing map ε : ER → X be the identity. This is a
retract domain representation of X, where the section is again the identity. By Lemma 5.6
P(E,ε)(X) ∼= Lens(X).

These two domain representations of X show that the powerspace depends on the
chosen domain representation, and that for some domain representations there may exist
lenses that are not representable.

Given an admissible representation of X, we do not know whether all lenses in X are
representable, but we can say something about the lenses generated by continuous images
of the Cantor space C.

Lemma 5.8. Let (D, δ : DR → X) be an admissible representation. If f : C → X is a
continuous function, then 〈f [C]〉X is (D, δ)-representable.

Proof. We represent C as a dense totality in the Cantor domain. Since (D, δ) is ad-
missible, the continuous map f : C→ X lifts to a continuous f̂ from the Cantor domain
into D. Then f̂ [C] ⊆ DR is a non-empty compact set and

δP(〈f̂ [C]〉D) = δL(〈f̂ [C]〉DR) = 〈δ[〈f̂ [C]〉DR ]〉X = 〈δ[f̂ [C]]〉X = 〈f [C]〉X .

The penultimate equation holds by Lemma 3.1(ii).

Example 5.9. Important instances of this Lemma are the domain representations of
the total continuous functionals of finite types over the natural numbers. More precisely,
let Dι be the flat domain N⊥ and Dρ→σ = [Dρ → Dσ], the domain of continuous
functions from Dρ to Dσ. Let DR

ρ be the set of total elements in Dρ, i.e DR
ι = N and

DR
ρ→σ = {f | f [DR

ρ ] ⊆ DR
σ }. Two total functionals f, g of the same type are equivalent if

they map equivalent arguments to equivalent results. Ershov showed that the quotients of
these equivalence relations define the total continuous functionals introduced by Kleene
and Kreisel (Kleene 1959; Kreisel 1959; Ershov 1977). Let δρ : DR

ρ → Kρ denote these
quotients. The domain representations (Dρ, δρ) are admissible, see e.g. (Hamrin 2005,
Theorem 7.6). Furthermore, Normann showed that every compact subset of Kρ is the
continuous image of a compact subspace of Baire space, and hence a continuous image
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of Cantor space (Normann 1980, Theorem 3.45 (iv)). It follows, by Lemma 5.8, that all
non-empty compact subsets of Kρ are representable. A more direct proof of this fact was
implicitly also given by Escardó (2008, Lemma 3.3.4.3).

An interesting subclass of the qcb0 spaces are the sequential Hausdorff spaces which
admit a countable pseudobase consisting of closed sets (Normann 2008). Every such space
X has a dense, admissible and upwards-closed domain representation (D, δ : DR → X),
where upwards-closed means that if x ∈ DR and x v x′, then x′ ∈ DR and δ(x) = δ(x′).
Dag Normann has proved (private communication) that in this case, every non-empty
compact subset K of X can be represented as a continuous image of Cantor space and
is (D, δ)-representable.

6. Topological properties

We study what properties, primarily topological, of a domain representable space are
preserved by the powerspace functor. We assume throughout that (D, δ : DR → X) is a
domain representation of X.

Lemma 6.1. If (D, δ) is a dense domain representation, then (P(D), δP) is a dense
domain representation.

Proof. By Lemma 3.9.

Proposition 6.2. If X is T0 then P(D,δ)(X) is T0 and therefore a qcb0-space.

Proof. The Vietoris topology on Lens(X) is T0, and so is any finer topology on the
subspace P(D,δ)(X).

By construction, P(D,δ)(X) is a topological quotient of P(D)R, a countably based
space.

A qcb0 space X is characterised by the existence of a dense, admissible representation
(D, δ : DR → X). We now prove that the powerspace P(D,δ)(X) is independent of the
specific choice of a dense admissible representation.

Lemma 6.3. Let (D, δ : DR → X) and (E, ε : ER → X) be dense, admissible represen-
tations of X.

Then P(D,δ)(X) = P(E,ε)(X). Moreover, the powerspace representations P(D, δ) and
P(E, ε) reduce to each other.

Proof. Since (D, δ) is dense and (E, ε) is admissible, there exists a continuous reduction
f : (D, δ) → (E, ε). The representation morphism fL : P(D, δ) → P(E, ε) represents
the continuous inclusion map idL : P(D,δ)(X) ⊆ P(E,ε)(X). By symmetry, the reverse
inclusion map is continuous as well, and P(D,δ)(X) = P(E,ε)(X).

This means that fL : P(D, δ)→ P(E, ε) represents the identity map, thus it is a con-
tinuous reduction. Symmetrically, we have a continuous reduction of P(E, ε) to P(D, δ).
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We denote this representation independent powerspace of X by P(X). Note that it
cannot be considered as a subspace of Lens(X), as the topology in general is finer than
the subspace topology.

By proposition 6.2 the class of qcb0 spaces is closed under the powerspace operation P.
We now show that P is an endofunctor over the category of qcb0 spaces and continuous
functions.

Lemma 6.4. Let X,Y be qcb0 spaces and let f : X → Y be continuous.
Then fL : P(X)→ P(Y ) is continuous.

Proof. Choose dense, admissible representations (D, δ : DR → X) and (E, ε : ER →
Y ). Let ϕ = f ◦ δ : DR → Y which is a continuous map.

Since (D,DR) is dense and (E, ε) is admissible, there exists a continuous ϕ̂ : D → E

which satisfies ϕ̂[DR] ⊆ ER and ε ◦ ϕ̂|DR = ϕ. In particular, ϕ̂ : (D, δ) → (E, ε) is a
representation morphism of f .

X Y

DR ER

D E

δ

ι

ε

ι

ϕ

ϕ̂

ϕ̂|DR

f

The representation morphism ϕ̂L : P(D, δ) → P(E, ε) induces a unique continuous
map g : P(X)→ P(Y ) which satisfies g ◦ δP = εP ◦ ϕ̂L|P(D)R .

On the other hand, if L ∈ P(D)R, then fL(δP(L)) = ϕL(L ∩DR) = (ε ◦ ϕ̂|DR)L(L ∩
DR) = εP(ϕ̂L(L)), which shows that fL◦δP = εP ◦ϕ̂L|P(D)R . Since δP is a representation
map, this implies g = fL, showing that fL is continuous.

It is an open problem whether P(D, δ) is admissible when (D, δ : DR → X) is. Every
other domain representation of P(X) of type P(E, ε), where (E, ε) is some dense domain
representation, will be continuously reducible to P(D, δ). It is, however, conceivable that
there are dense domain representations of P(X) which are not, and in that case, P(D, δ)
need not be admissible. Clearly, there is some dense, admissible domain representation
of the qcb0 space P(X), but not necessarily over a powerdomain P(D).

A strictly smaller class of topological spaces are the second countable T0 spaces, char-
acterised by the existence of a dense, retract representation. For retract representations,
we do obtain the preservation property which we lack for admissible representations.

Proposition 6.5. Let (D, δ : DR → X) be a retract domain representation of X. Then
P(D, δ) is a retract domain representation of Lens(X).

Proof. Let s : X → DR be a continuous maps which satisfies δ ◦ s = idX . From
proposition 3.4, we know that sL : Lens(X)→ Lens(DR) is continuous. Moreover, P(D)R

is homeomorphic to Lens(DR), so it is sufficient to show that δL ◦ sL = idLens(X), which
follows from the proof of Lemma 5.6.



Domain Representations of Spaces of Compact Subsets 15

In combination with lemma 6.1, this shows that second countable T0 spaces are closed
under P. Moreover, the powerspace P(X) is defined independently of the particular
choice of retract (D, δ), regardless of density.

Finally, we observe that the Hausdorff separation axiom is preserved by our powerspace
construction.

Proposition 6.6. If X is a Hausdorff space, then P(D,δ)(X) is Hausdorff.

Proof. The topology on P(D,δ)(X) is finer than the subspace topology from H(X),
which is Hausdorff by lemma 2.2.

7. The powerspace of a metric space

Let (X, d) be a metric space. The Hausdorff distance of two non-empty compact subsets
K, K ′ is defined by.

dH(K,K ′) = max{sup
x∈K

d(x,K ′), sup
x∈K′

d(x,K)}

where d(x,K) = infy∈K d(x, y). The following is well-known and easy to prove:

Lemma 7.1. The Hausdorff distance defines a metric on H(X). Its topology coincides
with the Vietoris topology.

Let DR be the interval domain, i.e. the ideal completion of the closed rational intervals
in Q ∪ {+∞,−∞} ordered by reverse inclusion. Let DR

R be the set of ideals whose
intersection is a singleton, and let δR : DR

R → R be the map that selects the unique
element. Then (DR, δR) is a dense retract, and hence admissible, representation of the
reals. In the development below any admissible domain representation of the reals could
be taken instead, but the interval representation is particularly convenient to work with.

In (Blanck 1999) it is shown that it is possible to build a domain representation
of H(X) by taking the powerdomain of the standard domain representation of X con-
structed in (Blanck 1997). We aim to generalise this result by applying our powerfunctor
to general domain representations of metric spaces. However, for this to go through we
need the domain representation of the metric space to be considered as a topological
algebra, and not just as a topological space. Hence, we will require that the metric also
is representable.

Definition 7.2. A domain representation of a metric space (X, d) is a pair

((D, δ : DR → X), d̄ : D2 → DR) ,

where (D, δ) is a retract domain representation of X, and d̄ satisfies d̄[(DR)2] ⊆ DR
R , and

d(δ(x), δ(x′)) = δRd̄(x, x′) ,

for all x, x′ ∈ DR.

The restriction to retract domain representations is justified since it follows from the
results and constructions in (Blanck 1997) that all separable metric spaces have retract
domain representations in the sense above.
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In the following, let ((D, δ), d̄ : D2 → DR) be a domain representation of a metric
space (X, d).

Consider the powerfunctor on a domain representation of a metric space. That is,
the domain representation P(D, δ). We aim to show that this representation can be
extended to a domain representation of the space H(X) with the Hausdorff metric. From
Proposition 6.5 and Lemma 7.1 it follows that the space H(X) is the same as the space
P(X) and carries the topology induced by the Hausdorff metric. Hence, all that is left to
show is that the Hausdorff metric can be tracked by a continuous function d̄H : (PD)2 →
DR such that d̄H [(P(D)R)2] ⊆ DR

R , and dH(δP(K), δP(K ′)) = δRd̄H(K,K ′).
We now carry out the construction of d̄H .

Lemma 7.3. Let x, y be elements of DR. For any ε > 0 there exist a ∈ approx(x) and
b ∈ approx(y) such that d̄(a, b) is an interval of length less than ε containing d(δ(x), δ(y)).

Proof. Let (r, s) be an open interval containing δd̄(x, y) = d(δ(x), δ(y)). The set U of
subintervals of (r, s) is open in the interval domain. The set d̄−1[U ] is an open subset
of D2 containing (x, y). Thus, there exist compact a and b in d̄−1[U ] below x and y

respectively.

Consider the powerfunctor on a domain representation of a metric space. That is, the
domain representation (P(D), δP : P(D)R → P(X)). We aim to show that the Hausdorff
metric is a continuous function from P(X)2 to DR.

The compact elements of P(D) can be identified as the equivalence classes of finite
sets of compact elements in D. A canonical choice in each equivalence class is the convex
closure of the finite set, but this set need not be finite. We will tacitly assume that A
and B range over ℘∗f (Dc), the set of finite non-empty subsets of Dc. We will also tacitly
assume that a and b range over Dc.

We will need to take minimums and maximums over non-empty sets of intervals. These
are defined as

min{[si, ti] : i ∈ I} = [min{si : i ∈ I},min{ti : i ∈ I}] ,

and analogously for max. Note that if the operators are viewed as n-ary operators on the
interval domain, for n ≥ 1, then they are monotone in each argument.

It is common and often useful to define distances in metric spaces between objects
other than points in the space. It is also customary to abuse the notation and retain the
letter d for distance functions derived from the metric d. We will follow this tradition.

Define the distance d : X × P(X)→ R by

d(x,K) = inf
y∈K

d(x, y) .

We mimic this definition by defining d̄ : Dc × P(D)c → DR by

d̄(a,B) = min
b∈B

d̄(a, b) .

Assume that a v a′. Then the minimum taken in d̄(a′, B) is over smaller intervals, as the
original d̄ is monotone. Since the minimum operation is monotone the resulting interval
is smaller, i.e., d̄ is monotone in the first argument.
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To see that d̄ is monotone in its second argument, we need to consider the upper and
lower bounds on the intervals separately. Assume that B vEM B′. Let S = {d̄(a, b) :
b ∈ B} and S′ = {d̄(a, b′) : b′ ∈ B′}. For each b ∈ B there exists b′ ∈ B′ such that
b v b′. Since d̄(a, b) v d̄(a, b′) we have that any upper bound of an interval in S will
have a better (smaller) upper bound in S′, and hence minS′ will have a better upper
bound than minS. For the lower bounds we have that for each b′ ∈ B′ there exists b ∈ B
such that b v b′. Again, since d̄(a, b) v d̄(a, b′) we have that any lower bound of an
interval in S′ will have a worse (smaller) lower bound in S, and hence minS′ will have a
better (larger) lower bound than minS. Thus, d̄ is monotone in its second argument as
well. Note that the above argument actually required both directions of the Egli-Milner
ordering.

The monotonicity of d̄ with respect to the Egli-Milner ordering is enough to show that
d̄ is well-defined on P(D)c. Moreover, it allows us to extend it to a continuous function
d̄ : D × P(D)→ DR.

Consider an x ∈ D and a non-empty compactK ⊆ DR. We will show that d(δ(x), δP(K))
is represented by d̄(x,K). The value

d(δ(x), δP(K)) = inf
y∈K

d(δ(x), δ(y))

will, in fact, be obtained for some choice of y0 ∈ K since K is compact.

Lemma 7.4. Let x ∈ DR and K ⊆ DR be compact. For any ε > 0 there exist a v x

and B vEM K such that, for all b ∈ B, d̄(a, b) is an interval of length less than ε.

Proof. For any y ∈ K there exists by Lemma 7.3 ay v x and by v y such that d̄(ay, by)
has length less than ε. Clearly, {↑by : y ∈ K} is an open covering of K so there exists a
finite subcovering

{↑by1 , . . . , ↑byn} .

Let

a =
⊔
{ay1 , . . . , ayn

}, and

B = {by1 , . . . , byn
} .

We have B vEM K, and by monotonicity of d̄ we have d̄(a, byi) has length less than ε.

For an ε > 0, let a and B be as in the above lemma. Let b ∈ B such that y0 ∈ ↑b,
where y0 ∈ K satisfies d(δ(x), δ(y0)) = infy∈K d(δ(x), δ(y)). Then d̄(a, b) is an interval of
length less than ε containing d(δ(x), δ(y0)) since d̄ represents d. The intervals d̄(a, b′) for
all other b′ ∈ B will have upper bounds greater than or equal to d(δ(x), δ(y0)) and will
have length less than ε. The minimum of all these intervals will be an interval of length
less than ε approximating the distance. Since ε was arbitrary we have that d̄(x,K) will
be a total element in DR. We have shown the following result.

Proposition 7.5. The function d̄ : D×P(D)→ DR induces the function d : X×P(X)→
R.
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Consider now the distance function d : P(X)2 → R defined by

d(K,K ′) = sup
x∈K

d(x,K ′),

so that dH(K,K ′) = max{d(K,K ′), d(K ′,K)}. Note that in general d(K,K ′) 6= d(K ′,K).
Define d̄ : P(D)2c → DR by

d̄(A,B) = max
a∈A

d̄(a,B).

Clearly, d̄ is monotone in its second argument since the point-to-set version is monotone
in its second argument. That d̄ also is monotone in its first argument follows from an
argument similar to the monotonicity of the second argument of the point-to-set version of
d̄. Thus, d̄ is well-defined and may be extended to a continuous function d̄ : P(D)2 → DR.

We may repeat the development above to prove the following result.

Proposition 7.6. The function d̄ : P(D)2 → DR induces the function d : P(X)2 → R.

Now we mimic the Hausdorff metric by defining d̄H : P(D)2c → DR by

d̄H(A,B) = max{d̄(A,B), d̄(B,A)}.

This is clearly monotone and therefore well-defined and extendable to a continuous func-
tion.

Proposition 7.7. d̄H : P(D)2 → DR represents dH : P(X)2 → R.

Proof. Immediate.

Theorem 7.8. Let ((D, δ), d̄ : D2 → DR) be a retract domain representation of a metric
space (X, d). Then (P(D, δ), d̄H : P(D)2 → DR) is a retract domain representation of
the metric space (H(X), dH).

Proof. By Lemma 7.1 and Propositions 7.7 and 6.5.

8. Conclusion and further work

The main motivation for the powerspace construction presented here is its natural charac-
terisation as a space of certain compact subsets. In the important example of a separable
metric space, it gives the expected result, the set of non-empty compact subsets with the
Hausdorff metric, thus generalising the result of (Blanck 1999).

A countable domain is a domain representation of itself with the identity as the rep-
resentation map. Our powerspace construction will in this case yield the Plotkin power-
domain. Thus, our construction is conservative with respect to usual powerdomains.

The powerdomain is the space of lenses with the Vietoris topology (Smyth 1983). As
we have seen, our construction will give a space of lenses with the Vietoris topology in
many cases. It is not clear whether this is always true in general. That is, there may exist
topological spaces for which our powerspace will have a topology that is strictly finer
than the Vietoris topology. Even if this turns out to be the case, there is still scope to
provide further classes of spaces for which the induced topology is the Vietoris topology,
possible candidates here would be cpos or sober spaces.



Domain Representations of Spaces of Compact Subsets 19

The notion of an admissible representation plays an important role, as the existence
of such a representation ensures that the powerspace construction is functorial (w.r.t.
continuous functions). However, we do not know that the powerspace of an admissible
domain representation will again be admissible. This is the most central open problem
in this paper. For the easier situation of retract representations, we know that the pow-
erspace will again be a retract representation.

There is an alternative characterisation of the Plotkin powerdomain as the free algebra
w.r.t. the Plotkin powertheory (see (Abramsky-Jung 1994; Gierz et al. 2003) for details),
and a similar free algebra construction has been studied for qcb0 spaces (Battenfeld
2006). A clear advantage of such an algebraic definition is that it points out the necessity
of considering the space constructed for representing non-determinism. An interesting
project would be to compare this construction to ours, as they both preserve the property
of being qcb0. We claim that the connection with the topological characterisation of the
Plotkin powerdomain and the preservation of the Hausdorff separation axiom are weighty
arguments for our choice.
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