Modal properties of recursively defined commands

Paul Blain Levy, University of Birmingham

A recent paper ("Seeing Beyond Divergence", W. A. Roscoe, 2004) defines an equivalence relation on programs, and then provides a denotational semantics for this equivalence by using an innovative fixpoint procedure called a *reflected fixpoint*. Our goal is to distil the essence of this technique, with a view to modelling other equivalence relations such as bisimilarity. The key requirement is to identify when a recursively defined program satisfies a given modal formula A, assuming we already know when programs satisfy the subformulas of A.

For expository purposes we use a very small calculus, but it seems that the results would still be true for a bigger one.

Syntax of Calculus Let A be a set of actions. Our calculus is CCS-like, and has countable nondeterminism and recursion. Its syntax is

$$M ::= a.M \mid \text{choose } \{i.M_i\}_{i \in \mathbb{N}} \mid x \mid \text{rec } x.M$$

For any command $\mathbf{x} \vdash M$ we write θ_M for the endofunction $N \mapsto M[N/\mathbf{x}]$ on the set of closed terms.

Operational semantics

The relation $M \stackrel{a}{\Rightarrow} N$ is defined inductively:

$$\frac{1}{a.M \stackrel{a}{\Rightarrow} M} \qquad \frac{M[\texttt{rec } \texttt{x}. M/\texttt{x}] \stackrel{a}{\Rightarrow} N}{\texttt{rec } \texttt{x}. M \stackrel{a}{\Rightarrow} N}$$
$$\frac{M_{\hat{i}} \stackrel{a}{\Rightarrow} N}{\texttt{choose } \{i.M_i\}_{i \in \mathbb{N}} \stackrel{a}{\Rightarrow} N} \hat{i} \in \texttt{nat}$$

The divergence predicate $M \uparrow$ is defined coinductively:

$$\frac{M_{\hat{i}} \Uparrow}{\text{choose } \{i.M_i\}_{i \in \mathbb{N}} \Uparrow} \, \hat{i} \in \text{nat} \qquad \frac{M[\text{rec } \mathbf{x}. M/\mathbf{x}] \Uparrow}{\text{rec } \mathbf{x}.M \Uparrow}$$

Logic We define a modal logic in the style of Hennessy-Milner:

$$A ::= \neg A \mid \bigvee_{i \in I} A_i \mid \bigwedge_{i \in I} A_i \mid \Diamond a.A \mid \Box \{s.A_s\}_{s \in \mathcal{A}^*}$$

where I is bounded by some suitable cardinal. Informally, $\Diamond a.A$ means:

It is posssible that a will be printed and then A will be satisfied.

And $\Box \{s.A_s\}_{s \in \mathcal{A}^*}$ means:

A time will come when A_s will be satisfied, where s is the string printed between now and then.

Formally, the satisfaction relation $M \vDash A$, where M is a closed command, is defined by induction on A.

- Standard clauses for negation, conjunction and disjunction.
- $M \vDash \Diamond a.A$ when there exists N such that $M \stackrel{a}{\Rightarrow} N$ and $N \vDash A$
- $M \models \Box \{s.A_s\}_{s \in \mathcal{A}^*}$ when

-
$$M = M_0 \stackrel{a_0}{\Rightarrow} M_1 \stackrel{a_1}{\Rightarrow} \cdots$$
 implies
 $\exists k \in \mathbb{N}. (M_k \vDash A_{a_0 a_1 \dots a_{k-1}})$
- $M = M_0 \stackrel{a_0}{\Rightarrow} M_1 \stackrel{a_1}{\Rightarrow} \cdots \stackrel{a_{n-1}}{\Rightarrow} M_n \Uparrow$ implies
 $\exists k \leqslant n. (M_k \vDash A_{a_0 a_1 \dots a_{k-1}})$

Definition 1 Let *A* be a formula. We define \leq_A to be the preorder on closed commands that relates M, M' when, for any context $C[\cdot]$, if $C[M] \models A$ then $C[M'] \models A$. We write \simeq_A for the symmetrization of \leq_A .

Proposition 1 rec x. $M \simeq_A M[\text{rec x. } M/x]$ for every formula A.

Conjecture 2 Suppose $C[\text{rec } x.M] \models B \stackrel{\text{def}}{=} \Diamond a. A$. Write C for the equivalence class of rec x.M under \simeq_A , so that θ_M restricts to an endofunction on C. Then there exists $n \in \mathbb{N}$ such that, for any $N \in C$, we have $C[\theta_M^n(N)] \models B$. \Box

Conjecture 3 Suppose $C[\operatorname{rec} x.M] \models B \stackrel{\text{def}}{=} \Box \{s.A_s\}_{s \in \mathcal{A}^*}$. Write *C* for the equivalence class of rec x.*M* under the equivalence relation $\bigcap_{s \in \mathcal{A}^*} \simeq_{A_s}$, so that θ_M restricts to an endofunction on *C*. There exists an ordinal $\gamma < \aleph_0$ such that, for any sequence $(N_\alpha)_{\alpha \leqslant \gamma}$ in *C* satisfying

- $N_{\alpha+1} = \theta_M(N_{\alpha})$, for every $\alpha < \gamma$
- N_β is an upper bound for {N_α | α < β} in the ≲_B preorder, for every limit ordinal β ≤ γ

we have $\mathcal{C}[N_{\gamma}] \models B$.